911 resultados para CELL DIFFERENTIATION
Resumo:
Extracellular signal-regulated kinase 5 (ERK5) is activated in response to environmental stress and growth factors. Gene ablation of Erk5 in mice is embryonically lethal as a result of disruption of cardiovascular development and vascular integrity. We investigated vascular endothelial growth factor (VEGF)-mediated ERK5 activation in primary human dermal microvascular endothelial cells (HDMECs) undergoing proliferation on a gelatin matrix, and tubular morphogenesis within a collagen gel matrix. VEGF induced sustained ERK5 activation on both matrices. However, manipulation of ERK5 activity by siRNA-mediated gene silencing disrupted tubular morphogenesis without impacting proliferation. Overexpression of constitutively active MEK5 and ERK5 stimulated tubular morphogenesis in the absence of VEGF. Analysis of intracellular signalling revealed that ERK5 regulated AKT phosphorylation. On a collagen gel, ERK5 regulated VEGF-mediated phosphorylation of the pro-apoptotic protein BAD and increased expression of the anti-apoptotic protein BCL2, resulting in decreased caspase-3 activity and apoptosis suppression. Our findings suggest that ERK5 is required for AKT phosphorylation and cell survival and is crucial for endothelial cell differentiation in response to VEGF.
Resumo:
The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium . During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC− cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC− cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC− cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC − cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.
Resumo:
Genetic interactions that underlie developmental processes such as cell differentiation and pattern formation are complex and difficult to elucidate. Neural Crest (NC) cells and their derivatives offer an optimal system in which to probe for these complex interactions as they acquire different cell fates and constitute a variety of structures. The transcription factors Sox10 and Pax3 as well as the transmembrane receptor Endothelin receptor b (Ednrb) are temporally and spatially co-expressed early in NC cells and mutations in these genes lead to similar hypopigmentation phenotypes due to a reduced number of NC-derived melanocyte precursors, the melanoblasts. The goal of this study was to establish whether Sox10 and Ednrb or Pax3 and Ednrb interact to promote normal murine melanocyte development. Crosses of Sox10 or Pax3 with Ednrb heterozygous mutants showed that the double heterozygous hypopigmentation phenotype was significantly more pronounced than phenotypes of single heterozygotes, implying that a synergistic interaction exists between Sox10 and Ednrb and Pax3 and Ednrb. This interaction was further explored by the attempt to rescue the Sox10 and Pax3 hypopigmentation phenotypes by the transgenic addition of Ednrb to melanoblasts. Pigmentation was completely restored in the Sox10 and partially restored in the Pax3 mutant mice. The comparison of the number of melanoblasts in transgenic and non-transgenic Sox10 mutant embryos showed that the transgenic rescue occurred as early as E11.5, a critical time for melanoblast population expansion. Cell survival assays indicated that the rescue was not due to an effect of the transgene on melanoblast survival. A novel phenotype arose when studying the interaction between Ednrb and Pax3. Newborns appeared normal but by 3.5 weeks of age, the affected pups were smaller than normal littermates and developed a dome-shaped head; some also developed thoracic kyphosis. Affected pups were dead by 4 weeks of age: 80% were Pax3Sp/+ and 75% were female. When compared to normal littermates, affected mice had brains with enlarged 4th ventricles and more glia while skeletal staining showed kyphosis, wider rib cages and pelvic differences. An epistatic interaction resulting from the mixing of genetic backgrounds that is exacerbated in the presence of Pax3 heterozygosity is suspected.
Resumo:
While studies on metazoan cell proliferation, cell differentiation, and cytokine signaling laid the foundation of the current paradigms of tyrosine kinase signaling, similar studies using lower eukaryotes have provided invaluable insight for the understanding of mammalian pathways, such as Wnt and STAT pathways. Dictyostelium is one of the leading lower eukaryotic model systems where stress-induced cellular responses, Wnt-like pathways, and STAT-mediated pathways are well investigated. TheseDictyostelium pathways will be reviewed together with their mammalian counterparts to facilitate the comparative understanding of these variant and noncanonical pathways.
Resumo:
NOTCH1 is a member of the NOTCH receptor family, a group of single-pass trans-membrane receptors. NOTCH signaling is highly conserved in evolution and mediates communication between adjacent cells. NOTCH receptors have been implicated in cell fate determination, as well as maintenance and differentiation of stem cells. In the mammalian testis expression of NOTCH1 in somatic and germ cells has been demonstrated, however its role in spermatogenesis was not clear. To study the significance of NOTCH1 in germ cells, we applied a cre/loxP approach in mice to induce NOTCH1 gain- or loss-of function specifically in male germ cells. Using a Stra8-icretransgene we produced mice with conditional activation of the NOTCH1 intracellular domain (NICD) in germ cells. Spermatogenesis in these mutants was progressively affected with age, resulting in decreased testis weight and sperm count. Analysis of downstream target genes of NOTCH1 signaling showed an increased expression of Hes5, with a reduction of the spermatogonial differentiation marker, Neurog3 expression in the mutant testis. Apoptosis was significantly increased in mouse germ cells with the corresponding elevation of pro-apoptotic Trp53 and Trp63genes' expression. We also showed that the conditional germ cell-specific ablation of Notch1 had no effect on spermatogenesis or male fertility. Our data suggest the importance of NOTCH signaling regulation in male germ cells for their survival and differentiation.
Resumo:
Wnt signaling plays a vital role in many developmental processes. Wnt signaling has been implicated in neural crest induction and cell differentiation among other functions. In mice Wnts comprise a family of nineteen glycoproteins that bind to Frizzled (Fzd) receptors and LRP5/6 co-receptors. This activates beta-catenin, which translocates into the nucleus and acts as a transcription factor, resulting in differential gene expression. Specifically, Fzd 3 enhances Wnt 1 signaling. Wnt 1 and Fzd 3 are involved in neural crest induction and in neural crest-derived melanocyte development. We analyzed the expression pattern ofFzd 3 and the LRP 5/6 by in situ hybridization inmouse embryos. Our data suggests a role for these genes in neural crest induction and in melanocyte differentiation in the murine system. Results show Fzd 3 expression in the anterior part of the neural tube and in the hindbrain, while LRP 5 is expressed in the anterior part of the neural tube, in the hindbrain, and in the eye. We conclude that Fzd 3 and LRP 5 are expressed in the neural crest. In addition, Fzd 3 might act as the receptor while LRP 5 might act as the co-receptor for Wntl signaling in the murine system.
Resumo:
The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium. During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC- cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC- cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC- cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC- cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.
Resumo:
Genetic interactions that underlie developmental processes such as cell differentiation and pattern formation are complex and difficult to elucidate. Neural Crest (NC) cells and their derivatives offer an optimal system in which to probe for these complex interactions as they acquire different cell fates and constitute a variety of structures. The transcription factors Sox10 and Pax3 as well as the transmembrane receptor Endothelin receptor b (Ednrb) are temporally and spatially co-expressed early in NC cells and mutations in these genes lead to similar hypopigmentation phenotypes due to a reduced number of NC-derived melanocyte precursors, the melanoblasts. The goal of this study was to establish whether Sox10 and Ednrb or Pax3 and Ednrb interact to promote normal murine melanocyte development. Crosses of Sox10 or Pax3 with Ednrb heterozygous mutants showed that the double heterozygous hypopigmentation phenotype was significantly more pronounced than phenotypes of single heterozygotes, implying that a synergistic interaction exists between Sox10 and Ednrb and Pax3 and Ednrb. This interaction was further explored by the attempt to rescue the Sox10 and Pax3 hypopigmentation phenotypes by the transgenic addition of Ednrb to melanoblasts. Pigmentation was completely restored in the Sox10 and partially restored in the Pax3 mutant mice. The comparison of the number of melanoblasts in transgenic and non-transgenic Sox10 mutant embryos showed that the transgenic rescue occurred as early as E11.5, a critical time for melanoblast population expansion. Cell survival assays indicated that the rescue was not due to an effect of the transgene on melanoblast survival. A novel phenotype arose when studying the interaction between Ednrb and Pax3. Newborns appeared normal but by 3.5 weeks of age, the affected pups were smaller than normal littermates and developed a dome-shaped head; some also developed thoracic kyphosis. Affected pups were dead by 4 weeks of age: 80% were Pax3Sp/+ and 75% were female. When compared to normal littermates, affected mice had brains with enlarged 4th ventricles and more glia while skeletal staining showed kyphosis, wider rib cages and pelvic differences. An epistatic interaction resulting from the mixing of genetic backgrounds that is exacerbated in the presence of Pax3 heterozygosity is suspected.
Resumo:
OBJECTIVE: The aim was to analyze the expression of E-cadherin and beta-catenin in ameloblastomas and tooth germs to determine their roles in cell differentiation processes and invasiveness compared with odontogenesis. STUDY DESIGN: Twenty-one ameloblastoma cases (16 solid and 5 unicystic tumors) and 5 tooth germs were submitted to the immunohistochemical detection of E-cadherin and beta-catenin. Immunoreactivity was evaluated using descriptive and semiquantitative analysis, investigating the location and intensity of staining. The Fisher exact test was performed, and P values of <.05 were considered to indicate statistical significance. RESULTS: There was no statistically significant difference in the expression of E-cadherin and beta-catenin between solid and unicystic ameloblastomas (P = .59; P = .63; respectively). The same was found when comparing solid and unicystic ameloblastomas with the tooth germs for both E-cadherin (P = .53; P = .44; respectively) and beta-catenin (P = .12; P = .16; respectively). Nuclear staining of beta-catenin was observed in only 4 cases (3 solid and 1 unicystic tumor). CONCLUSION: The results showed no differences in the expression of E-cadherin or beta-catenin between tooth germs and solid and unicystic ameloblastomas. The expression of these molecules seems mainly to be related to the process of cell differentiation.
Resumo:
Calcium (Ca2+) is a known important second messenger. Calcium/Calmodulin (CaM) dependent protein kinase kinase 2 (CaMKK2) is a crucial kinase in the calcium signaling cascade. Activated by Ca2+/CaM, CaMKK2 can phosphorylate other CaM kinases and AMP-activated protein kinase (AMPK) to regulate cell differentiation, energy balance, metabolism and inflammation. Outside of the brain, CaMKK2 can only be detected in hematopoietic stem cells and progenitors, and in the subsets of mature myeloid cells. CaMKK2 has been noted to facilitate tumor cell proliferation in prostate cancer, breast cancer, and hepatic cancer. However, whethter CaMKK2 impacts the tumor microenvironment especially in hematopoietic malignancies remains unknown. Due to the relevance of myeloid cells in tumor growth, we hypothesized that CaMKK2 has a critical role in the tumor microenvironment, and tested this hyopothesis in murine models of hematological and solid cancer malignancies.
We found that CaMKK2 ablation in the host suppressed the growth of E.G7 murine lymphoma, Vk*Myc myeloma and E0771 mammary cancer. The selective ablation of CaMKK2 in myeloid cells was sufficient to restrain tumor growth, of which could be reversed by CD8 cell depletion. In the lymphoma microenvironment, ablating CaMKK2 generated less myeloid-derived suppressor cells (MDSCs) in vitro and in vivo. Mechanistically, CaMKK2 deficient dendritic cells showed higher Major Histocompatibility Class II (MHC II) and costimulatory factor expression, higher chemokine and IL-12 secretion when stimulated by LPS, and have higher potent in stimulating T-cell activation. AMPK, an anti-inflammatory kinase, was found as the relevant downstream target of CaMKK2 in dendritic cells. Treatment with CaMKK2 selective inhibitor STO-609 efficiently suppressed E.G7 and E0771 tumor growth, and reshaped the tumor microenvironment by attracting more immunogenic myeloid cells and infiltrated T cells.
In conclusion, we demonstrate that CaMKK2 expressed in myeloid cells is an important checkpoint in tumor microenvironment. Ablating CaMKK2 suppresses lymphoma growth by promoting myeloid cells development thereby decreasing MDSCs while enhancing the anti-tumor immune response. CaMKK2 inhibition is an innovative strategy for cancer therapy through reprogramming the tumor microenvironment.
Resumo:
Gene regulation is a complex and tightly controlled process that defines cell function in physiological and abnormal states. Programmable gene repression technologies enable loss-of-function studies for dissecting gene regulation mechanisms and represent an exciting avenue for gene therapy. Established and recently developed methods now exist to modulate gene sequence, epigenetic marks, transcriptional activity, and post-transcriptional processes, providing unprecedented genetic control over cell phenotype. Our objective was to apply and develop targeted repression technologies for regenerative medicine, genomics, and gene therapy applications. We used RNA interference to control cell cycle regulation in myogenic differentiation and enhance the proliferative capacity of tissue engineered cartilage constructs. These studies demonstrate how modulation of a single gene can be used to guide cell differentiation for regenerative medicine strategies. RNA-guided gene regulation with the CRISPR/Cas9 system has rapidly expanded the targeted repression repertoire from silencing single protein-coding genes to modulation of genes, promoters, and other distal regulatory elements. In order to facilitate its adaptation for basic research and translational applications, we demonstrated the high degree of specificity for gene targeting, gene silencing, and chromatin modification possible with Cas9 repressors. The specificity and effectiveness of RNA-guided transcriptional repressors for silencing endogenous genes are promising characteristics for mechanistic studies of gene regulation and cell phenotype. Furthermore, our results support the use of Cas9-based repressors as a platform for novel gene therapy strategies. We developed an in vivo AAV-based gene repression system for silencing endogenous genes in a mouse model. Together, these studies demonstrate the utility of gene repression tools for guiding cell phenotype and the potential of the RNA-guided CRISPR/Cas9 platform for applications such as causal studies of gene regulatory mechanisms and gene therapy.
Resumo:
The six-layered neuron structure in the cerebral cortex is the foundation for human mental abilities. In the developing cerebral cortex, neural stem cells undergo proliferation and differentiate into intermediate progenitors and neurons, a process known as embryonic neurogenesis. Disrupted embryonic neurogenesis is the root cause of a wide range of neurodevelopmental disorders, including microcephaly and intellectual disabilities. Multiple layers of regulatory networks have been identified and extensively studied over the past decades to understand this complex but extremely crucial process of brain development. In recent years, post-transcriptional RNA regulation through RNA binding proteins has emerged as a critical regulatory nexus in embryonic neurogenesis. The exon junction complex (EJC) is a highly conserved RNA binding complex composed of four core proteins, Magoh, Rbm8a, Eif4a3, and Casc3. The EJC plays a major role in regulating RNA splicing, nuclear export, subcellular localization, translation, and nonsense mediated RNA decay. Human genetic studies have associated individual EJC components with various developmental disorders. We showed previously that haploinsufficiency of Magoh causes microcephaly and disrupted neural stem cell differentiation in mouse. However, it is unclear if other EJC core components are also required for embryonic neurogenesis. More importantly, the molecular mechanism through which the EJC regulates embryonic neurogenesis remains largely unknown. Here, we demonstrated with genetically modified mouse models that both Rbm8a and Eif4a3 are required for proper embryonic neurogenesis and the formation of a normal brain. Using transcriptome and proteomic analysis, we showed that the EJC posttranscriptionally regulates genes involved in the p53 pathway, splicing and translation regulation, as well as ribosomal biogenesis. This is the first in vivo evidence suggesting that the etiology of EJC associated neurodevelopmental diseases can be ribosomopathies. We also showed that, different from other EJC core components, depletion of Casc3 only led to mild neurogenesis defects in the mouse model. However, our data suggested that Casc3 is required for embryo viability, development progression, and is potentially a regulator of cardiac development. Together, data presented in this thesis suggests that the EJC is crucial for embryonic neurogenesis and that the EJC and its peripheral factors may regulate development in a tissue-specific manner.
Novel P(3HB) Composite Films Containing Bioactive Glass Nanoparticles for Wound Healing Applications
Resumo:
Bioactive glass (BG) is considered an ideal material for haemostasis as it releases Ca2+ ions upon hydration, which is required to support thrombosis. In this study the effect of the presence of the BG nanoparticles in P(3HB) microsphere films on the structural properties, thermal properties and biocompatibility of the films were studied. The nanoscaled bioactive glass with a high surface area was also tested for its in vitro haemostatic efficacy and was found to be able to successfully reduce the clot detection time. In an effort to study the effect of the roughness induced by the formation of HA on the cellular functions such as cell adhesion, cell mobility and cell differentiation, the composite films were immersed in SBF for a period of 1, 3 and 7 days. From the SEM images the surface of the P(3HB)/n-BG composite microsphere films appeared fairly uniform and smooth on day 1, however on day 3 and day 7 a rough and uneven surface was observed. The presence of HA on the composite microsphere films on day 3 and day 7 influenced the surface roughness of the films. However, when the P(3HB)/n-BG composite microspheres with enhanced surface roughness were tested for biocompatibility, reduced amount of protein adsorption and cell adhesion were observed. This study thus revealed that there is an optimal surface roughness for the P(3HB) microsphere films for increased cell adhesion, beyond which it could be deleterious for cell adhesion and differentiation.
Resumo:
Background: Esophageal adenocarcinoma (EA) is one of the fastest rising cancers in western countries. Barrett’s Esophagus (BE) is the premalignant precursor of EA. However, only a subset of BE patients develop EA, which complicates the clinical management in the absence of valid predictors. Genetic risk factors for BE and EA are incompletely understood. This study aimed to identify novel genetic risk factors for BE and EA.Methods: Within an international consortium of groups involved in the genetics of BE/EA, we performed the first meta-analysis of all genome-wide association studies (GWAS) available, involving 6,167 BE patients, 4,112 EA patients, and 17,159 representative controls, all of European ancestry, genotyped on Illumina high-density SNP-arrays, collected from four separate studies within North America, Europe, and Australia. Meta-analysis was conducted using the fixed-effects inverse variance-weighting approach. We used the standard genome-wide significant threshold of 5×10-8 for this study. We also conducted an association analysis following reweighting of loci using an approach that investigates annotation enrichment among the genome-wide significant loci. The entire GWAS-data set was also analyzed using bioinformatics approaches including functional annotation databases as well as gene-based and pathway-based methods in order to identify pathophysiologically relevant cellular pathways.Findings: We identified eight new associated risk loci for BE and EA, within or near the CFTR (rs17451754, P=4·8×10-10), MSRA (rs17749155, P=5·2×10-10), BLK (rs10108511, P=2·1×10-9), KHDRBS2 (rs62423175, P=3·0×10-9), TPPP/CEP72 (rs9918259, P=3·2×10-9), TMOD1 (rs7852462, P=1·5×10-8), SATB2 (rs139606545, P=2·0×10-8), and HTR3C/ABCC5 genes (rs9823696, P=1·6×10-8). A further novel risk locus at LPA (rs12207195, posteriori probability=0·925) was identified after re-weighting using significantly enriched annotations. This study thereby doubled the number of known risk loci. The strongest disease pathways identified (P<10-6) belong to muscle cell differentiation and to mesenchyme development/differentiation, which fit with current pathophysiological BE/EA concepts. To our knowledge, this study identified for the first time an EA-specific association (rs9823696, P=1·6×10-8) near HTR3C/ABCC5 which is independent of BE development (P=0·45).Interpretation: The identified disease loci and pathways reveal new insights into the etiology of BE and EA. Furthermore, the EA-specific association at HTR3C/ABCC5 may constitute a novel genetic marker for the prediction of transition from BE to EA. Mutations in CFTR, one of the new risk loci identified in this study, cause cystic fibrosis (CF), the most common recessive disorder in Europeans. Gastroesophageal reflux (GER) belongs to the phenotypic CF-spectrum and represents the main risk factor for BE/EA. Thus, the CFTR locus may trigger a common GER-mediated pathophysiology.