973 resultados para CAVITY QUANTUM ELECTRODYNAMICS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We construct a quantum random walk algorithm, based on the Dirac operator instead of the Laplacian. The algorithm explores multiple evolutionary branches by superposition of states, and does not require the coin toss instruction of classical randomised algorithms. We use this algorithm to search for a marked vertex on a hypercubic lattice in arbitrary dimensions. Our numerical and analytical results match the scaling behaviour of earlier algorithms that use a coin toss instruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were fabricated on silicon nitride/Si (111) substrate by droplet epitaxy. Single-crystalline structure of InN QDs was verified by transmission electron microscopy, and the chemical bonding configurations of InN QDs were examined by x-ray photoelectron spectroscopy. Photoluminescence measurement shows a slight blue shift compared to the bulk InN, arising from size dependent quantum confinement effect. The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of InN QDs were studied in a metal-semiconductor-metal configuration in the temperature range of 80-300K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651762]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes steady and unsteady computation of reacting flow in a Trapped Vortex Combustor. The primary motivation of this study is to develop this concept into a working combustor in modern gas turbines. The present work is an effort towards development of an experimental model test rig for further understanding dynamics of a single cavity trapped vortex combustor. The steady computations with and without combustion have been done for L/D of 0.8, 1 and 1.2; also unsteady non-reacting flow simulation has been done for L/D of 1. Fuel used for the present study is methane and Eddy-Dissipation model has been used for combustion-turbulence interactions. For L/D of 0.8, combustion efficiency is maximum and pattern factor is minimum. Also, primary vortex in the cavity is more stable and symmetric for L/D of 0.8. From unsteady non-reacting flow simulations, it is found that there is no vortex shedding from the cavity but there are oscillations in the span-wise direction of the combustor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computations have been carried out for simulating supersonic flow through a set of converging-diverging nozzles with their expanding jets forming a laser cavity and flow patterns through diffusers, past the cavity. A thorough numerical investigation with 3-D RANS code is carried out to capture the flow distribution which comprises of shock patterns and multiple supersonic jet interactions. The analysis of pressure recovery characteristics during the flow through the diffusers is an important parameter of the simulation and is critical for the performance of the laser device. The results of the computation have shown a close agreement with the experimentally measured parameters as well as other established results indicating that the flow analysis done is found to be satisfactory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lagrange's equation is utilized to show the analogy of a lossless microwave cavity resonator with the conventional LC network. A brief discussion on the resonant frequencies of a microwave cavity resonator and the two degenerate companion modes H01 and E11 appearing in a cavity is given. The first order perturbation theory of a small deformation of the wall of a cavity is discussed. The effects of perturbation, such as the change in the resonant frequency and the Q of a cavity, the change in the electromagnetic field configurations and hence mixing of modes are also discussed. An expression for the coupling coefficient between the two degenerate modes H01 and E11 is derived with the help of the field equations. Results indicate that in the absence of perturbation the above two degenerate modes can co-exist without losing their individual identities. Several applications of the perturbation theory, such as the measurement of the dielectric properties of matter, study of ferromagnetic resonance, etc., are described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on our study of the edge of the 2/5 fractional quantum Hall state, which is more complicated than the edge of the 1/3 state because of the presence of edge sectors corresponding to different partitions of composite fermions in the lowest two Lambda levels. The addition of an electron at the edge is a nonperturbative process and it is not a priori obvious in what manner the added electron distributes itself over these sectors. We show, from a microscopic calculation, that when an electron is added at the edge of the ground state in the [N(1), N(2)] sector, where N(1) and N(2) are the numbers of composite fermions in the lowest two Lambda levels, the resulting state lies in either [N(1) + 1, N(2)] or [N(1), N(2) + 1] sectors; adding an electron at the edge is thus equivalent to adding a composite fermion at the edge. The coupling to other sectors of the form [N(1) + 1 + k, N(2) - k], k integer, is negligible in the asymptotically low-energy limit. This study also allows a detailed comparison with the two-boson model of the 2/5 edge. We compute the spectral weights and find that while the individual spectral weights are complicated and nonuniversal, their sum is consistent with an effective two-boson description of the 2/5 edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simplified theoretical formulation of the Fowler-Nordheim field emission (FNFE) under magnetic quantization and also in quantum wires of optoelectronic materials on the basis of a newly formulated electron dispersion law in the presence of strong electric field within the framework of k.p formalism taking InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x) As(y)P(1-y) lattice matched to InP as examples. The FNFE exhibits oscillations with inverse quantizing magnetic field and electron concentration due to SdH effect and increases with increasing electric field. For quantum wires the FNFE increases with increasing film thickness due to the existence van-Hove singularity and the magnitude of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. Under certain limiting conditions, all the results as derived in this paper get transformed in to well known Fowler-Nordheim formula. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study concerns the flow-acoustic characterisation of a cavity-based combustor configuration. A well-validated numerical tool has been used to simulate the unsteady, two-dimensional reacting flow. Initially, a conventional flow over a cavity with dimensions and conditions corresponding to a compact cavity combustor was studied. Cavity mass injections in the form of fuel and air injections required for trapped vortex formation were then employed and the resonance features of this configuration were studied. The results indicate that the cavity depth mode resonance mechanism is dominant at the conditions studied in this work and that the oscillation frequencies do not change with cavity air injection. This observation is important since it implies that the only important variable which can alter resonant frequencies is the cavity depth. With combustion, the pressure oscillation amplitude was observed to increases significantly due to periodic entrainment of the cavity air jet and fluctuation of fuel-air mixture composition to produce highly fluctuating heat-release rates. The underlying mechanisms of the unsteady flow in the cavity combustor identified in this study indicate the strong dependence of the acoustics on the cavity injection strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ulam’s problem is a two person game in which one of the player tries to search, in minimum queries, a number thought by the other player. Classically the problem scales polynomially with the size of the number. The quantum version of the Ulam’s problem has a query complexity that is independent of the dimension of the search space. The experimental implementation of the quantum Ulam’s problem in a Nuclear Magnetic Resonance Information Processor with 3 quantum bits is reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice. We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation eta and eta + d eta, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary.