968 resultados para CATIONIC CLAY
Resumo:
In this venture three distinct class of catalysts such as, pillared clays and transition metal loaded pillared clays , porous clay heterostructures and their transition metal loaded analogues and DTP supported on porous clay heterostructures etc. were prepared and characterized by various physico chemical methods. The catalytic activities of prepared catalysts were comparatively evaluated for the industrially important alkylation, acetalization and oxidation reactions.The general conclusions drawn from the present investigation are Zirconium, iron - aluminium pillared clays were synthesized by ion exchange method and zirconium-silicon porous heterostructures were Summary and conclusions 259 prepared by intergallery template method. Transition metals were loaded in PILCs and PCHs by wet impregnation method. Textural and acidic properties of the clays were modified by pillaring and post pillaring modifications. The shift in 2θ value to lower range and increase in d (001) spacing indicate the success of pillaring process. Surface area, pore volume, average pore size etc. increased dramatically as a result of pillaring process. Porous clay heterostructures have higher surface area, pore volume, average pore diameter and narrow pore size distribution than that of pillared clays. The IR spectrum of PILCs and PCHs are in accordance with literature without much variation compared to parent montmorillonite which indicate that basic clay structure is retained even after modification. The silicon NMR of PCHs materials have intense peaks corresponding to Q4 environment which indicate that mesoporous silica is incorporated between clay layers. Thermo gravimetric analysis showed that thermal stability is improved after the pillaring process. PCH materials have higher thermal stability than PILCs. In metal loaded pillared clays, up to 5% metal species were uniformly dispersed (with the exception of Ni) as evident from XRD and TPR analysis. Chapter 9 260 Impregnation of transition metals in PILCs and PCHs enhanced acidity of catalysts as evident from TPD of ammonia and cumene cracking reactions. For porous clay heterostructures the acidic sites have major contribution from weak and medium acid sites which can be related to the Bronsted sites as evident from TPD of ammonia. Pillared clays got more Lewis acidity than PCHs as inferred from α- methyl styrene selectivity in cumene cracking reaction. SEM images show that layer structure is preserved even after modification. Worm hole like morphology is observed in TEM image of PCHs materials In ZrSiPCHS, Zr exists as Zr 4+ and is incorporated to silica pillars in the intergallary of clay layers as evident from XPS analysis. In copper loaded zirconium pillared clays, copper exists as isolated species with +2 oxidation state at lower loading. At higher loading, Cu exists as clusters as evident from reduction peak at higher temperatures in TPR. In vanadium incorporated PILCs and PCHs, vanadium exist as isolated V5+ in tetrahedral coordination which is confirmed from TPR and UVVis DRS analysis. In cobalt loaded PCHs, cobalt exists as CoO with 2+ oxidation state as confirmed from XPS. Cerium incorporated iron aluminium pillared clay was found to be the best catalyst for the hydroxylation of phenol in aqueous media due to the additional surface area provided by ceria mesopores and its redox properties. Summary and conclusions 261 Cobalt loaded zirconium porous clay heterostructures were found to be promising catalyst for the tertiary butylation of phenol due to higher surface area and acidic properties. Copper loaded pillared clays were found to be good catalyst for the direct hydroxylation of benzene to phenol. Vanadium loaded PCHs catalysts were found to be efficient catalysts for oxidation of benzyl alcohol. DTP was firmly fixed on the mesoporous channels of PCHs by Direct method and functionalization method. DTP supported PCHs catalyst were found to be good catalyst for acetalization of cyclohexanone with more than 90% conversion.
Resumo:
Upgrading two widely used standard plastics, polypropylene (PP) and high density polyethylene (HDPE), and generating a variety of useful engineering materials based on these blends have been the main objective of this study. Upgradation was effected by using nanomodifiers and/or fibrous modifiers. PP and HDPE were selected for modification due to their attractive inherent properties and wide spectrum of use. Blending is the engineered method of producing new materials with tailor made properties. It has the advantages of both the materials. PP has high tensile and flexural strength and the HDPE acts as an impact modifier in the resultant blend. Hence an optimized blend of PP and HDPE was selected as the matrix material for upgradation. Nanokaolinite clay and E-glass fibre were chosen for modifying PP/HDPE blend. As the first stage of the work, the mechanical, thermal, morphological, rheological, dynamic mechanical and crystallization characteristics of the polymer nanocomposites prepared with PP/HDPE blend and different surface modified nanokaolinite clay were analyzed. As the second stage of the work, the effect of simultaneous inclusion of nanokaolinite clay (both N100A and N100) and short glass fibres are investigated. The presence of nanofiller has increased the properties of hybrid composites to a greater extent than micro composites. As the last stage, micromechanical modeling of both nano and hybrid A composite is carried out to analyze the behavior of the composite under load bearing conditions. These theoretical analyses indicate that the polymer-nanoclay interfacial characteristics partially converge to a state of perfect interfacial bonding (Takayanagi model) with an iso-stress (Reuss IROM) response. In the case of hybrid composites the experimental data follows the trend of Halpin-Tsai model. This implies that matrix and filler experience varying amount of strain and interfacial adhesion between filler and matrix and also between the two fillers which play a vital role in determining the modulus of the hybrid composites.A significant observation from this study is that the requirement of higher fibre loading for efficient reinforcement of polymers can be substantially reduced by the presence of nanofiller together with much lower fibre content in the composite. Hybrid composites with both nanokaolinite clay and micron sized E-glass fibre as reinforcements in PP/HDPE matrix will generate a novel class of high performance, cost effective engineering material.
Resumo:
Water shortage is one of the major constraints for production of horticultural crops in arid and semiarid regions. A field experiment was conducted to determine irrigation water and fertilizer use efficiency, growth and yield of tomato under clay pot irrigation at the experimental site of Sekota Dryland Agricultural Research Center, Lalibela, Ethiopia in 2009/10. The experiment comprised of five treatments including furrow irrigated control and clay pot irrigation with different plant population and fertilization methods, which were arranged in Randomized Complete Block Design with three replications. The highest total and marketable fruit yields were obtained from clay pot irrigation combined with application of nitrogen fertilizer with irrigation water irrespective of difference in plant population. The clay pot irrigation had seasonal water use of up to 143.71 mm, which resulted in significantly higher water use efficiency (33.62 kg m^-3) as compared to the furrow irrigation, which had a seasonal water use of 485.50 mm, and a water use efficiency of 6.67 kg m^-3. Application of nitrogen fertilizer with irrigation water in clay pots improved fertilizer use efficiency of tomato by up to 52% than band application with furrow or clay pot irrigation. Thus, clay pot irrigation with 33,333 plants ha^-1 and nitrogen fertilizer application with irrigation water in clay pots was the best method for increasing the yield of tomato while economizing the use of water and nitrogen fertilizer in a semiarid environment.
Resumo:
The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH, K, Ca, Mg, CEC, Mn and nitrate while decreasing Al content and potential acidity of soils. No distinct effect of char application on grain yield of aerobic rice was observed. We believe that soil properties impacted by char application were inconsequential for rice yields because neither water, low pH, nor the availability of K or P were limiting factors for rice production. Rate of char above 16 Mg ha^(−1) reduced leaf area index and total shoot dry matter by 72 days after sowing. The number of panicles infected by rice blast decreased with increasing char rate. Increased dry matter beyond the remobilization capacity of the crop, and high number of panicles infected by rice blast were the likely cause of the lower grain yield observed when more than 60 kg N ha^(−1) was applied. The optimal rate of N was 46 kg ha^(−1) and resulted in a rice grain yield above 3 Mg ha^(−1).
Resumo:
Aquesta tesi doctoral se centra en l'estudi de l'aplicació de pèptids antimicrobians en la lluita contra agents patògens de cultius de plantes d'interès econòmic.L'estratègia sintètica s'ha portat a terme utilitzant metodologies convencionals de síntesi de pèptids en fase sòlida com l'estratègia tridimensional ortogonal Fmoc/tBut/Allyl. Ha calgut fer la recerca de les condicions òptimes per a l'eliminació del grup Allyl i la ciclació. D'entre els pèptids cíclics de 4-10 aminoacids sintetitzats, el decapèptid c(Lys-Leu-Lys-Leu-Lys-Phe-Lys-Lys-Leu-Gln) ha resultat ésser el més efectiu i s'ha pres com a base per al disseny d'una quimioteca de 56 pèptids. Dels resultats obtinguts s'ha sintetitzat una segona quimioteca basada en l'estructura general c(X1-X2-X3-X4-Lys-Phe-Lys-Lys-Leu-Gln) determinada com la que posseix el millor perfil d'activitat. Els pèptids més efectius obtinguts constituixen els primers exemples de pèptids cíclics actius contra E. amylovora i poden ser considerats com a bons candidats pel desenvolupament d'agents antimicrobians efectius en protecció vegetal.
Resumo:
This paper discusses the results of study to determine differences in artwork done by hearing impaired and normal hearing children.
Resumo:
The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M-CTAB/M-TP) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M-CTAB/M-TP = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Water-soluble cationic copolymers and hydrogels were synthesized by radical copolymerization of [2-(methacryloyloxy)ethyl]trimetilylammonium chloride (MADQUAT) and 2-hydroxyethylacrylate (HEA). The kinetics of copolymerization has been studied and the reactivity ratios were determined. It was found that MADQUAT exhibits higher reactivity in copolymerization. The complexation between linear MADQUAT-HEA and linear poly(acrylic acid) (PAA) has been studied in aqueous solutions at different pH. It results in the formation of insoluble polyelectrolyte complexes, whose composition and stability to aggregate depends on MADQUAT content in copolymers and pH. The hydrogels were synthesized by three-dimensional radical copolymerization of MADQUAT and HEA in the presence of a crosslinker. The effects of the feed mixture composition on yield and swelling properties of the hydrogels were studied. The interactions of these hydrogels with linear PAA result in formation of gel-polyelectrolyte complexes and contraction of the samples. It was found that the contraction depends on copolymer composition, PAA molecular weight, and solution pH. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Three series of water-soluble cationic copolymers have been synthesised by free-radical copolymerisation of [2-(methacryloyloxy)ethyl]-trimethylammonium chloride (MADQUAT) with methyl acrylate (MA), butyl acrylate (BA) and butyl methacrylate (BMA). The interactions between these copolymers and porcine stomach mucin have been studied in aqueous solutions using dynamic light scattering, zeta-potential measurements, turbidimetric titration and transmission electron microscopy (TEM). It was demonstrated that mixing aqueous dispersions of mucin with solutions of the cationic copolymers results in significant changes in size distribution and zeta-potential of its particles. It was found that an increase in the content of hydrophobic groups in copolymers leads to more efficient adsorption of macromolecules on the surface of mucin particles, which evidences the importance of hydrophobic effects in mucoadhesion. The efficiency of mucoadhesive interactions was found to be significantly dependent on pH, which affects the surface charge and aggregation stability of mucin. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Addition of the dithioethers (−)-DIOSR2 (R=Me, iPr) (2,3-O-isopropylidene-1,4-dimethyl (and diisopropyl) thioether-L-threitol) to a dichloromethane solution of [Rh(COD)2]ClO4 (COD=1,5-cyclooctadiene) yielded the mononuclear complexes [Rh(COD)(DIOSR2)]ClO4. X-ray diffraction methods showed that the [Rh(COD)(DIOSiPr2)]ClO4 complex had an square-planar coordination geometry at the rhodium atom with the iPr groups in anti position. Cyclooctadiene complexes react with carbon monoxide to form dinuclear tetracarbonylated complexes [(CO)2Rh(μ-DIOSR2)2(CO)2](ClO4)2. [Rh(COD)(DIOSR2)]ClO4 are active catalyst precursors in styrene hydroformylation at 30 atm and 65°C which give conversions of up to 99% with a regioselectivity in 2-phenylpropanal as high as 74%. In all cases enantioselectivities are low.
Resumo:
In a previous study we have demonstrated that gallic acid (GA) in its anionic form can be recovered from aqueous solutions using colloidal gas aphrons (CGA) generated from the cationic surfactant cetyltrimethylammonium bromide (CTAB). The aim of the present work is to get a better understanding of the separation mechanism in order to determine the optimum operating conditions to maximise the recovery of GA while preserving its antioxidant properties. Zeta potential measurements were carried out to characterise the surface charge of GA, CTAB and their mixtures at three different pH conditions (both in buffers and in aqueous solutions). GA interacted strongly with CTAB at pH higher than its pKa 3.14 where it is ionised and negatively charged. However, at pH higher than 7 GA becomes oxidised and loses its antioxidant power. GA recovery was mainly affected by pH, ionic strength, surfactant/GA molar ratio, mixing conditions and contact time. Scale-up of the separation using a flotation column resulted in both higher recovery and reproducibility. Preliminary experiments with grape marc extracts confirmed the potential application of this separation for the recovery of polyphenols from complex feedstocks
Resumo:
We investigate the properties of an antimicrobial surfactant-like peptide (Ala)6(Arg), A6R, containing a cationic headgroup. The interaction of this peptide with zwitterionic (DPPC) lipid vesicles is investigated using a range of microscopic, X-ray scattering, spectroscopic, and calorimetric methods. The β-sheet structure adopted by A6R is disrupted in the presence of DPPC. A strong effect on the small-angle X-ray scattering profile is observed: the Bragg peaks from the DPPC bilayers in the vesicle walls are eliminated in the presence of A6R and only bilayer form factor peaks are observed. All of these observations point to the interaction of A6R with DPPC bilayers. These studies provide insight into interactions between a model cationic peptide and vesicles, relevant to understanding the action of antimicrobial peptides on lipid membranes. Notably, peptide A6R exhibits antimicrobial activity without membrane lysis.
Resumo:
Paleoenvironmental and paleoclimatic changes during the Valanginian carbon isotopic excursion (CIE) have been investigated in the western Tethys. For this purpose, bulk-rock and clay mineralogies, as well as phosphorus (P) contents were evaluated in a selection of five sections located in the Vocontian Basin (Angles, SE France; Alvier, E Switzerland; Malleval, E France), and the Lombardian Basin (Capriolo, N Italy; Breggia, S Switzerland). Within the CIE interval, bulk-rock and clay mineralogies are inferred to reflect mostly climate change. The onset of the CIE (Busnardoites campylotoxus ammonite Zone) is characterized by higher detrital index (DI: sum of the detrital minerals divided by calcite contents) values and the presence of kaolinite in their clay-mineral assemblages. In the late Valanginian (from the Saynoceras verrucosum Zone up to the end of the Valanginian), the samples show relatively variable DI and lower values or the absence of kaolinite. The variation in the mineralogical composition is interpreted as reflecting a change from a climate characterized by optimal weathering conditions associated with an increase in terrigenous input on the southern European margin during the CIE towards an overall unstable climate associated with drier conditions in the late Valanginian. This is contrasted by a dissymmetry (proximal vs distal) along the studied transect, the northern Tethyan margin being more sensitive to changes in continental input compared to the distal environments. P accumulation rates (PAR) present similar features. In the Vocontian basin, P content variations are associated with changes in terrigenous influx, whereas in the Lombardian basin (i.e. Capriolo and Breggia), PAR values are less well correlated. This is mainly because the deeper part of the Tethys was less sensitive to changes in continental inputs. The onset of the CIE (top of the B. campylotoxus Zone) records a general increase in PAR suggesting an increase in marine nutrient levels. This is linked to higher continental weathering rates and the enhanced influx of nutrients into the ocean. In the period corresponding to the shift itself, P contents show a dissymmetry between the Vocontian and Lombardian basins (proximal vs distal). For the sections of Malleval, Alvier and Angles, a decrease in P concentrations associated to a decrease in detrital input is observed. In Capriolo and Breggia, PAR show maximum values during the plateau, indicating a more complex interaction between different P sources. The time interval including the top of S. verrucosum Zone up to the end of the Valanginian is characterized by variable PAR values, suggesting variable nutrient influxes. These changes are in agreement with an evolution towards seasonally contrasted conditions in the late Valanginian.
Resumo:
Water soluble anionic and cationic bis-triazine ligands are able to suppress (mask) the extraction of corrosion and fission products such as Ni(II) and Pd(II) that are found in PUREX raffinates. Thus it is possible to separate these elements from the minor actinide Am(III). Although some masking agents have previously been developed that retard the extraction of Pd(II), this is the first time a masking agent has been developed for Ni(II).