938 resultados para Business intelligence, data warehouse, sql server
Resumo:
The South Carolina Department of Employment and Workforce Business Intelligence Department monthly publishes Insights in conjunction with the U.S. Department of Labor, Bureau of Labor Statistics. The monthly newsletter provides economic indicators, employment rates and changes by county, nonfarm employment trends, and other statistics.
Resumo:
Actualmente, o SIS depara-se com problemas relativos à normalização e qualidade de dados, interoperabilidade entre instituições e inexistência de sistemas que suportem e agilizem o processo da decisão estratégica no sector. Numa primeira fase, este trabalho caracteriza e clarifica o papel das diversas instituições que colaboram com o MS, a forma como é gerida a informação e o conhecimento e os pressupostos do PNS enquanto documento agregador de indicadores que permitem avaliar o estado da saúde em Portugal. Com base na caracterização do sector e na importância orientadora do PNS, apresenta-se uma metodologia que organiza e desenvolve um modelo de metadados, baseados nos indicadores para a saúde, presentes no PNS. A sua importância para o sector é evidente uma vez que permite servir de suporte ao futuro desenvolvimento de aplicações estratégicas de apoio à decisão, salvaguardando a implementação e a divulgação do PNS e dos seus indicadores. ABSTRACT; Currently, the SIS comes across with problems related with normalization and quality of data, cooperation between institutions and the inexistence of systems that support and speed the process of strategical decisions in the sector. ln a first phase, this work characterizes and simplifies the role of each institution that collaborates with MS, the form as it is managed the information and the knowledge and the fundamentals of PNS, as a document witch aggregates pointers that allow the evaluation of the state of health in Portugal. On the basis of this characterization and the orienting importance of PNS, this work demonstrates a metadata methodology that organizes and develops a model, based on health pointers, indicated in PNS. Its importance for the sector is evident because it can support future developments of strategical applications, safeguarding the implementation and the analysis of PNS and its pointers.
Resumo:
El volumen de datos en bibliotecas ha aumentado enormemente en los últimos años, así como también la complejidad de sus fuentes y formatos de información, dificultando su gestión y acceso, especialmente como apoyo en la toma de decisiones. Sabiendo que una buena gestión de bibliotecas involucra la integración de indicadores estratégicos, la implementación de un Data Warehouse (DW), que gestione adecuadamente tal cantidad de información, así como su compleja mezcla de fuentes de datos, se convierte en una alternativa interesante a considerar. El artículo describe el diseño e implementación de un sistema de soporte de decisiones (DSS) basado en técnicas de DW para la biblioteca de la Universidad de Cuenca. Para esto, el estudio utiliza una metodología holística, propuesto por Siguenza-Guzman et al. (2014) para la evaluación integral de bibliotecas. Dicha metodología evalúa la colección y los servicios, incorporando importantes elementos para la gestión de bibliotecas, tales como: el desempeño de los servicios, el control de calidad, el uso de la colección y la interacción con el usuario. A partir de este análisis, se propone una arquitectura de DW que integra, procesa y almacena los datos. Finalmente, estos datos almacenados son analizados y visualizados a través de herramientas de procesamiento analítico en línea (OLAP). Las pruebas iniciales de implementación confirman la viabilidad y eficacia del enfoque propuesto, al integrar con éxito múltiples y heterogéneas fuentes y formatos de datos, facilitando que los directores de bibliotecas generen informes personalizados, e incluso permitiendo madurar los procesos transaccionales que diariamente se llevan a cabo.
Resumo:
Libraries since their inception 4000 years ago have been in a process of constant change. Although, changes were in slow motion for centuries, in the last decades, academic libraries have been continuously striving to adapt their services to the ever-changing user needs of students and academic staff. In addition, e-content revolution, technological advances, and ever-shrinking budgets have obliged libraries to efficiently allocate their limited resources among collection and services. Unfortunately, this resource allocation is a complex process due to the diversity of data sources and formats required to be analyzed prior to decision-making, as well as the lack of efficient integration methods. The main purpose of this study is to develop an integrated model that supports libraries in making optimal budgeting and resource allocation decisions among their services and collection by means of a holistic analysis. To this end, a combination of several methodologies and structured approaches is conducted. Firstly, a holistic structure and the required toolset to holistically assess academic libraries are proposed to collect and organize the data from an economic point of view. A four-pronged theoretical framework is used in which the library system and collection are analyzed from the perspective of users and internal stakeholders. The first quadrant corresponds to the internal perspective of the library system that is to analyze the library performance, and costs incurred and resources consumed by library services. The second quadrant evaluates the external perspective of the library system; user’s perception about services quality is judged in this quadrant. The third quadrant analyses the external perspective of the library collection that is to evaluate the impact of the current library collection on its users. Eventually, the fourth quadrant evaluates the internal perspective of the library collection; the usage patterns followed to manipulate the library collection are analyzed. With a complete framework for data collection, these data coming from multiple sources and therefore with different formats, need to be integrated and stored in an adequate scheme for decision support. A data warehousing approach is secondly designed and implemented to integrate, process, and store the holistic-based collected data. Ultimately, strategic data stored in the data warehouse are analyzed and implemented for different purposes including the following: 1) Data visualization and reporting is proposed to allow library managers to publish library indicators in a simple and quick manner by using online reporting tools. 2) Sophisticated data analysis is recommended through the use of data mining tools; three data mining techniques are examined in this research study: regression, clustering and classification. These data mining techniques have been applied to the case study in the following manner: predicting the future investment in library development; finding clusters of users that share common interests and similar profiles, but belong to different faculties; and predicting library factors that affect student academic performance by analyzing possible correlations of library usage and academic performance. 3) Input for optimization models, early experiences of developing an optimal resource allocation model to distribute resources among the different processes of a library system are documented in this study. Specifically, the problem of allocating funds for digital collection among divisions of an academic library is addressed. An optimization model for the problem is defined with the objective of maximizing the usage of the digital collection over-all library divisions subject to a single collection budget. By proposing this holistic approach, the research study contributes to knowledge by providing an integrated solution to assist library managers to make economic decisions based on an “as realistic as possible” perspective of the library situation.
Resumo:
El presente proyecto:Inteligencia de negocios, aplicando la metodología RFM a las cuentas de los socios de la COAC Jardín Azuayo, se desarrolla sobre la necesidad de la institución de contar con herramientas eficientes y eficaces para la toma de decisiones y conocimiento del socio. Primero, se determina la importancia de construir una herramienta de Inteligencia de Negocios dentro de Jardín Azuayo que permita obtener información clara y concisa en tiempo real para la toma de decisiones. Segundo, se continúa con el desarrollo de metodologías para la gestión del valor del socio a través del conocimiento de sus necesidades analizando la información histórica de su última transacción realizada, la frecuencia con la que acude para acceder a los servicios que ofrece la Cooperativa y el monto promedio por transacción. Finalmente, al combinar la herramienta de Inteligencia de Negocios para la obtención de información y la aplicación de metodologías para el conocimiento del socio, se ha podido plantear dos estrategias básicas para la afianzar la fidelización del socio con la Cooperativa.
Resumo:
Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.
Resumo:
Large scale distributed data stores rely on optimistic replication to scale and remain highly available in the face of net work partitions. Managing data without coordination results in eventually consistent data stores that allow for concurrent data updates. These systems often use anti-entropy mechanisms (like Merkle Trees) to detect and repair divergent data versions across nodes. However, in practice hash-based data structures are too expensive for large amounts of data and create too many false conflicts. Another aspect of eventual consistency is detecting write conflicts. Logical clocks are often used to track data causality, necessary to detect causally concurrent writes on the same key. However, there is a nonnegligible metadata overhead per key, which also keeps growing with time, proportional with the node churn rate. Another challenge is deleting keys while respecting causality: while the values can be deleted, perkey metadata cannot be permanently removed without coordination. Weintroduceanewcausalitymanagementframeworkforeventuallyconsistentdatastores,thatleveragesnodelogicalclocks(BitmappedVersion Vectors) and a new key logical clock (Dotted Causal Container) to provides advantages on multiple fronts: 1) a new efficient and lightweight anti-entropy mechanism; 2) greatly reduced per-key causality metadata size; 3) accurate key deletes without permanent metadata.
Resumo:
This paper examines the effects of information request ambiguity and construct incongruence on end user's ability to develop SQL queries with an interactive relational database query language. In this experiment, ambiguity in information requests adversely affected accuracy and efficiency. Incongruities among the information request, the query syntax, and the data representation adversely affected accuracy, efficiency, and confidence. The results for ambiguity suggest that organizations might elicit better query development if end users were sensitized to the nature of ambiguities that could arise in their business contexts. End users could translate natural language queries into pseudo-SQL that could be examined for precision before the queries were developed. The results for incongruence suggest that better query development might ensue if semantic distances could be reduced by giving users data representations and database views that maximize construct congruence for the kinds of queries in typical domains. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
With the proliferation of relational database programs for PC's and other platforms, many business end-users are creating, maintaining, and querying their own databases. More importantly, business end-users use the output of these queries as the basis for operational, tactical, and strategic decisions. Inaccurate data reduce the expected quality of these decisions. Implementing various input validation controls, including higher levels of normalisation, can reduce the number of data anomalies entering the databases. Even in well-maintained databases, however, data anomalies will still accumulate. To improve the quality of data, databases can be queried periodically to locate and correct anomalies. This paper reports the results of two experiments that investigated the effects of different data structures on business end-users' abilities to detect data anomalies in a relational database. The results demonstrate that both unnormalised and higher levels of normalisation lower the effectiveness and efficiency of queries relative to the first normal form. First normal form databases appear to provide the most effective and efficient data structure for business end-users formulating queries to detect data anomalies.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.
Resumo:
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores