957 resultados para Breakdown symmetry
Resumo:
The last 2 decades have seen discoveries in highly excited states of atoms and molecules of phenomena that are qualitatively different from the “planetary” model of the atom, and the near-rigid model of molecules, characteristic of these systems in their low-energy states. A unified view is emerging in terms of approximate dynamical symmetry principles. Highly excited states of two-electron atoms display “molecular” behavior of a nonrigid linear structure undergoing collective rotation and vibration. Highly excited states of molecules described in the “standard molecular model” display normal mode couplings, which induce bifurcations on the route to molecular chaos. New approaches such as rigid–nonrigid correlation, vibrons, and quantum groups suggest a unified view of collective electronic motion in atoms and nuclear motion in molecules.
Resumo:
Reasoning from two basic principles of molecular physics, P invariance of electromagnetic interaction and the second law of thermodynamics, one would conclude that mirror symmetry retained in the world of chiral molecules. This inference is fully consistent with what is observed in inorganic nature. However, in the bioorganic world, the reverse is true. Mirror symmetry there is definitely broken. Is it possible to account for this phenomenon without going beyond conventional concepts of the kinetics of enantioselective processes? This study is an attempt to survey all existing hypotheses containing this phenomenon.
Resumo:
The mechanisms underlying the menstrual lysis leading to shedding of the human endometrium and its accompanying bleeding are still largely unknown. In particular, whether breakdown of the endometrial fibrillar extra-cellular matrix that precedes bleeding depends on aspartic-, cysteine-, serine-, or metalloproteinases remains unclear. In the present study, menstrual regression of the human endometrium was mimicked in organ culture. Whereas sex steroids could preserve tissue integrity only in nonperimenstrual explants, matrix breakdown upon sex steroid deprivation was completely and reversibly inhibited at all stages of the menstrual cycle by specific inhibitors of matrix metalloproteinases, but not by inhibitors of the other classes of proteinases. Matrix metalloproteinases are thus identified as the key class of proteinases involved in the initiation of menstruation.
Resumo:
In each facet of the Drosophila compound eye, a cluster of photoreceptor cells assumes an asymmetric trapezoidal pattern. These clusters have opposite orientations above and below an equator, showing global dorsoventral mirror symmetry. However, in the mutant spiny legs, the polarization of each cluster appears to be random, so that no equator is evident. The apparent lack of an equator suggests that spiny legs+ may be involved in the establishment of global dorsoventral identity that might be essential for proper polarization of the photoreceptor clusters. Alternatively, a global dorsoventral pattern could be present, but spiny legs+ may be required for local polarization of individual clusters. Using an enhancer trap strain in which white+ gene expression is restricted to the dorsal field, we show that white+ expression in spiny legs correctly respects dorsoventral position even in facets with inappropriate polarizations; the dorsoventral boundary is indeed present, whereas the mechanism for polarization is perturbed. It is suggested that the boundary is established before the action of spiny legs+ by an independent mechanism.
Resumo:
Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. This study examines the hypothesis that ezrin dephosphorylation accompanies and may mediate the anoxic disruption of the rabbit renal PT. During normoxia, 73 +/- 3% of the cytoskeleton-associated (Triton-insoluble) ezrin was phosphorylated, but 88 +/- 6% of dissociated (Triton-soluble) ezrin was dephosphorylated. Phosphorylation was on serine/threonine resides, since ezrin was not detectable by an antibody against phosphotyrosine. After 60 min of anoxia, phosphorylation of total intracellular ezrin significantly decreased from 72 +/- 2% to 21 +/- 9%, and ezrin associated with the cytoskeleton decreased from 91 +/- 2% to 58 +/- 2%. Calyculin A (1 microM), the serine/threonine phosphatase inhibitor, inhibited the dephosphorylation of ezrin during anoxia by 57% and also blocked the dissociation of ezrin from the cytoskeleton by 53%. Our results demonstrate that (i) the association of ezrin with the renal microvillar cytoskeleton is correlated with phosphorylation of ezrin serine/threonine residues and (ii) anoxia may cause disruption of the renal brush border by dephosphorylating ezrin and thereby dissociating the brush border membrane from the cytoskeleton.
Resumo:
Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.
Resumo:
We study the effect of sublattice symmetry breaking on the electronic, magnetic, and transport properties of two-dimensional graphene as well as zigzag terminated one- and zero-dimensional graphene nanostructures. The systems are described with the Hubbard model within the collinear mean field approximation. We prove that for the noninteracting bipartite lattice with an unequal number of atoms in each sublattice, in-gap states still exist in the presence of a staggered on-site potential ±Δ/2. We compute the phase diagram of both 2D and 1D graphene with zigzag edges, at half filling, defined by the normalized interaction strength U/t and Δ/t, where t is the first neighbor hopping. In the case of 2D we find that the system is always insulating, and we find the Uc(Δ) curve above which the system goes antiferromagnetic. In 1D we find that the system undergoes a phase transition from nonmagnetic insulator for U
Resumo:
There is international consensus among scholars that democratic transitions are multicausal processes in which both internal and international variables are involved (Pridham 1991, 1995; Whitehead 1996; Schmitter 1996; Linz and Stepan 1996; Carothers 1999; Morlino and Magen 2008; Grilli di Cortona 2009). This chapter is limited, on the one hand, to the dependent variable consisting solely of the crisis/breakdown/transformation of non-democratic regimes in the Third Wave of democratization, and, on the other hand, to an independent variable identified solely with the international dimension of democratic transition. This factor, which can be termed the Proactive International Dimension (PID), specifically concerns that combination of actions or processes, produced by one or more international actors, that, intentionally or not, cause or contribute to the crisis/breakdown/transformation of a non-democratic regime.