701 resultados para Blended studio learning environments
Resumo:
This paper attempts to shed light on the competencies a teacher must have inorder to teach in online university environments. We will relate a teacher trainingexperience, which was designed taking into account the methodological criteriaestablished in line with previous theoretical principles. The main objective of ouranalysis is to identify the achievements and difficulties of a specific formativeexperience, with the ultimate goal of assessing the suitability of this conceptualmethodologicalframework for the design of formative proposals aiming to contribute tothe development of teacher competencies for virtual environments.
Resumo:
The teaching of higher level mathematics for technical students in a virtual learningenvironment poses some difficulties, but also opportunities, now specific to that virtuality.On the other hand, resources and ways to do now manly available in VLEs might soon extend to all kinds of environments.In this short presentation we will discuss anexperience carried at Universitat Oberta deCatalunya (UOC) involving (an on line university), first, the translation of LaTeX written existent materials to a web based format(specifically, a combination of XHTML andMathML), and then the integration of a symbolic calculator software (WIRIS) running as a Java applet embedded in the materials, intending to achieve an evolution from memorising concepts and repetitive algorithms to understanding and experiment concepts and the use of those algorithms.
Resumo:
Artikkeli luettavissa osassa: Part 2. - ISBN 9789522163172(PDF). - Liitteenä työpaperi
Resumo:
Communication, the flow of ideas and information between individuals in a social context, is the heart of educational experience. Constructivism and constructivist theories form the foundation for the collaborative learning processes of creating and sharing meaning in online educational contexts. The Learning and Collaboration in Technology-enhanced Contexts (LeCoTec) course comprised of 66 participants drawn from four European universities (Oulu, Turku, Ghent and Ramon Llull). These participants were split into 15 groups with the express aim of learning about computer-supported collaborative learning (CSCL). The Community of Inquiry model (social, cognitive and teaching presences) provided the content and tools for learning and researching the collaborative interactions in this environment. The sampled comments from the collaborative phase were collected and analyzed at chain-level and group-level, with the aim of identifying the various message types that sustained high learning outcomes. Furthermore, the Social Network Analysis helped to view the density of whole group interactions, as well as the popular and active members within the highly collaborating groups. It was observed that long chains occur in groups having high quality outcomes. These chains were also characterized by Social, Interactivity, Administrative and Content comment-types. In addition, high outcomes were realized from the high interactive cases and high-density groups. In low interactive groups, commenting patterned around the one or two central group members. In conclusion, future online environments should support high-order learning and develop greater metacognition and self-regulation. Moreover, such an environment, with a wide variety of problem solving tools, would enhance interactivity.
Resumo:
International partnership has received growing interest in the literature during the past decades due to globalization, increased technological approaches and rapid changes in competitive environments. The study specifically determines the support provided by international partners on promotion of e-learning in East Africa, assess the motives of partner selection criteria, the determinants of selecting partners, partner models and partner competence of e-learning provider. The study also evaluates obstacles of e-learning partnering strategy in East Africa learning institutions. The research adopts a descriptive survey design. Target population involved East Africa learning institutions with a list of potential institutions generated from the Ministry of Higher Education database. Through a targeted reduction of the initial database, consisting of all learning institutions, both public and private, the study created a target sample base of 200 learning institutions. Structured questionnaires scheduled were used to collect primary data. Study findings showed the approach way East African communities in selecting their e-learning partners depend on international reputation of partners, partner with ability to negotiate with foreign governments, partner with international and local experiences, nationality of foreign partner and partners with local market knowledge.
Resumo:
The brain is a complex system, which produces emergent properties such as those associated with activity-dependent plasticity in processes of learning and memory. Therefore, understanding the integrated structures and functions of the brain is well beyond the scope of either superficial or extremely reductionistic approaches. Although a combination of zoom-in and zoom-out strategies is desirable when the brain is studied, constructing the appropriate interfaces to connect all levels of analysis is one of the most difficult challenges of contemporary neuroscience. Is it possible to build appropriate models of brain function and dysfunctions with computational tools? Among the best-known brain dysfunctions, epilepsies are neurological syndromes that reach a variety of networks, from widespread anatomical brain circuits to local molecular environments. One logical question would be: are those complex brain networks always producing maladaptive emergent properties compatible with epileptogenic substrates? The present review will deal with this question and will try to answer it by illustrating several points from the literature and from our laboratory data, with examples at the behavioral, electrophysiological, cellular and molecular levels. We conclude that, because the brain is a complex system compatible with the production of emergent properties, including plasticity, its functions should be approached using an integrated view. Concepts such as brain networks, graphics theory, neuroinformatics, and e-neuroscience are discussed as new transdisciplinary approaches dealing with the continuous growth of information about brain physiology and its dysfunctions. The epilepsies are discussed as neurobiological models of complex systems displaying maladaptive plasticity.
Resumo:
Traditionally metacognition has been theorised, methodologically studied and empirically tested from the standpoint mainly of individuals and their learning contexts. In this dissertation the emergence of metacognition is analysed more broadly. The aim of the dissertation was to explore socially shared metacognitive regulation (SSMR) as part of collaborative learning processes taking place in student dyads and small learning groups. The specific aims were to extend the concept of individual metacognition to SSMR, to develop methods to capture and analyse SSMR and to validate the usefulness of the concept of SSMR in two different learning contexts; in face-to-face student dyads solving mathematical word problems and also in small groups taking part in inquiry-based science learning in an asynchronous computer-supported collaborative learning (CSCL) environment. This dissertation is comprised of four studies. In Study I, the main aim was to explore if and how metacognition emerges during problem solving in student dyads and then to develop a method for analysing the social level of awareness, monitoring, and regulatory processes emerging during the problem solving. Two dyads comprised of 10-year-old students who were high-achieving especially in mathematical word problem solving and reading comprehension were involved in the study. An in-depth case analysis was conducted. Data consisted of over 16 (30–45 minutes) videotaped and transcribed face-to-face sessions. The dyads solved altogether 151 mathematical word problems of different difficulty levels in a game-format learning environment. The interaction flowchart was used in the analysis to uncover socially shared metacognition. Interviews (also stimulated recall interviews) were conducted in order to obtain further information about socially shared metacognition. The findings showed the emergence of metacognition in a collaborative learning context in a way that cannot solely be explained by individual conception. The concept of socially-shared metacognition (SSMR) was proposed. The results highlighted the emergence of socially shared metacognition specifically in problems where dyads encountered challenges. Small verbal and nonverbal signals between students also triggered the emergence of socially shared metacognition. Additionally, one dyad implemented a system whereby they shared metacognitive regulation based on their strengths in learning. Overall, the findings suggested that in order to discover patterns of socially shared metacognition, it is important to investigate metacognition over time. However, it was concluded that more research on socially shared metacognition, from larger data sets, is needed. These findings formed the basis of the second study. In Study II, the specific aim was to investigate whether socially shared metacognition can be reliably identified from a large dataset of collaborative face-to-face mathematical word problem solving sessions by student dyads. We specifically examined different difficulty levels of tasks as well as the function and focus of socially shared metacognition. Furthermore, the presence of observable metacognitive experiences at the beginning of socially shared metacognition was explored. Four dyads participated in the study. Each dyad was comprised of high-achieving 10-year-old students, ranked in the top 11% of their fourth grade peers (n=393). Dyads were from the same data set as in Study I. The dyads worked face-to-face in a computer-supported, game-format learning environment. Problem-solving processes for 251 tasks at three difficulty levels taking place during 56 (30–45 minutes) lessons were video-taped and analysed. Baseline data for this study were 14 675 turns of transcribed verbal and nonverbal behaviours observed in four study dyads. The micro-level analysis illustrated how participants moved between different channels of communication (individual and interpersonal). The unit of analysis was a set of turns, referred to as an ‘episode’. The results indicated that socially shared metacognition and its function and focus, as well as the appearance of metacognitive experiences can be defined in a reliable way from a larger data set by independent coders. A comparison of the different difficulty levels of the problems suggested that in order to trigger socially shared metacognition in small groups, the problems should be more difficult, as opposed to moderately difficult or easy. Although socially shared metacognition was found in collaborative face-to-face problem solving among high-achieving student dyads, more research is needed in different contexts. This consideration created the basis of the research on socially shared metacognition in Studies III and IV. In Study III, the aim was to expand the research on SSMR from face-to-face mathematical problem solving in student dyads to inquiry-based science learning among small groups in an asynchronous computer-supported collaborative learning (CSCL) environment. The specific aims were to investigate SSMR’s evolvement and functions in a CSCL environment and to explore how SSMR emerges at different phases of the inquiry process. Finally, individual student participation in SSMR during the process was studied. An in-depth explanatory case study of one small group of four girls aged 12 years was carried out. The girls attended a class that has an entrance examination and conducts a language-enriched curriculum. The small group solved complex science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry during 22 lessons (á 45–minute). Students’ network discussion were recorded in written notes (N=640) which were used as study data. A set of notes, referred to here as a ‘thread’, was used as the unit of analysis. The inter-coder agreement was regarded as substantial. The results indicated that SSMR emerges in a small group’s asynchronous CSCL inquiry process in the science domain. Hence, the results of Study III were in line with the previous Study I and Study II and revealed that metacognition cannot be reduced to the individual level alone. The findings also confirm that SSMR should be examined as a process, since SSMR can evolve during different phases and that different SSMR threads overlapped and intertwined. Although the classification of SSMR’s functions was applicable in the context of CSCL in a small group, the dominant function was different in the asynchronous CSCL inquiry in the small group in a science activity than in mathematical word problem solving among student dyads (Study II). Further, the use of different analytical methods provided complementary findings about students’ participation in SSMR. The findings suggest that it is not enough to code just a single written note or simply to examine who has the largest number of notes in the SSMR thread but also to examine the connections between the notes. As the findings of the present study are based on an in-depth analysis of a single small group, further cases were examined in Study IV, as well as looking at the SSMR’s focus, which was also studied in a face-to-face context. In Study IV, the general aim was to investigate the emergence of SSMR with a larger data set from an asynchronous CSCL inquiry process in small student groups carrying out science activities. The specific aims were to study the emergence of SSMR in the different phases of the process, students’ participation in SSMR, and the relation of SSMR’s focus to the quality of outcomes, which was not explored in previous studies. The participants were 12-year-old students from the same class as in Study III. Five small groups consisting of four students and one of five students (N=25) were involved in the study. The small groups solved ill-defined science problems in an asynchronous CSCL environment, participating in research-like processes of inquiry over a total period of 22 hours. Written notes (N=4088) detailed the network discussions of the small groups and these constituted the study data. With these notes, SSMR threads were explored. As in Study III, the thread was used as the unit of analysis. In total, 332 notes were classified as forming 41 SSMR threads. Inter-coder agreement was assessed by three coders in the different phases of the analysis and found to be reliable. Multiple methods of analysis were used. Results showed that SSMR emerged in all the asynchronous CSCL inquiry processes in the small groups. However, the findings did not reveal any significantly changing trend in the emergence of SSMR during the process. As a main trend, the number of notes included in SSMR threads differed significantly in different phases of the process and small groups differed from each other. Although student participation was seen as highly dispersed between the students, there were differences between students and small groups. Furthermore, the findings indicated that the amount of SSMR during the process or participation structure did not explain the differences in the quality of outcomes for the groups. Rather, when SSMRs were focused on understanding and procedural matters, it was associated with achieving high quality learning outcomes. In turn, when SSMRs were focused on incidental and procedural matters, it was associated with low level learning outcomes. Hence, the findings imply that the focus of any emerging SSMR is crucial to the quality of the learning outcomes. Moreover, the findings encourage the use of multiple research methods for studying SSMR. In total, the four studies convincingly indicate that a phenomenon of socially shared metacognitive regulation also exists. This means that it was possible to define the concept of SSMR theoretically, to investigate it methodologically and to validate it empirically in two different learning contexts across dyads and small groups. In-depth micro-level case analysis in Studies I and III showed the possibility to capture and analyse in detail SSMR during the collaborative process, while in Studies II and IV, the analysis validated the emergence of SSMR in larger data sets. Hence, validation was tested both between two environments and within the same environments with further cases. As a part of this dissertation, SSMR’s detailed functions and foci were revealed. Moreover, the findings showed the important role of observable metacognitive experiences as the starting point of SSMRs. It was apparent that problems dealt with by the groups should be rather difficult if SSMR is to be made clearly visible. Further, individual students’ participation was found to differ between students and groups. The multiple research methods employed revealed supplementary findings regarding SSMR. Finally, when SSMR was focused on understanding and procedural matters, this was seen to lead to higher quality learning outcomes. Socially shared metacognition regulation should therefore be taken into consideration in students’ collaborative learning at school similarly to how an individual’s metacognition is taken into account in individual learning.
Resumo:
This research explored the events that engaged graduate students in transformative learning within a graduate program in education. This context was chosen because one objective of a graduate program is to facilitate critical thinking and transformative learning. The question ofhow adult learners perceive and experience learning steered the direction ofthis study. However, the purpose ofthis research was to study critical incidents that led to profound cognitive and affective changes as perceived by the graduate students. Specifically, the questions to be answered were what critical incidents happened to graduate students while in the Master ofEducation program, how were the incidents experienced, and what transformation resulted? The research design evolved over the course of a year and was highly influenced by previous empirical studies and criticisms oftransformative learning theory. The overall design was qualitative and phenomenological. A critical and interpretive approach was made to empirical data collected through a critical incident questionnaire and in-depth interviews. Inductive analysis allowed theory to be built from the data by making comparisons. New questions emerged and attention was given to social context, the passage oftime, and sequence ofevents in order to give meaning and translation ofthe participants' experiences and to build the interpretive narratives. Deductive analysis was also used on the data and a blending ofthe two forms of analysis; this resulted in the development ofa foundational model for transformative learning to be built.The data revealed critical incidents outside ofthe graduate school program that occurred in childhood or adult life prior to graduate school. Since context of individuals' lives had been an important critique of past transformative learning models and studies, this research expanded the original boundaries of this study beyond graduate school to incorporate incidents that occurred outside of graduate school. Critical incidents were categorized into time-related, people-related, and circumstancerelated themes. It was clear that participants were influenced and molded by the stage oftheir life, personal experiences, familial and cultural conditioning, and even historic events. The model developed in this document fiom an overview ofthe fmdings identifies a four-stage process of life difficulty, disintegration, reintegration, and completion that all participants' followed. The blended analysis was revealed from the description ofhow the incidents were experienced by the participants. The final categories were what were the feelings, what was happening, and what was the enviromnent? The resulting transformation was initially only going to consider cognitive and affective changes, however, it was apparent that contextual changes also occurred for all participants, so this category was also included. The model was described with the construction metaphor of a building "foimdation" to illustrate the variety of conditions that are necessary for transformative learning to occur. Since this was an exploratory study, no prior models or processes were used in data analysis, however, it appeared that the model developed from this study incorporated existing models and provided a more encompassing life picture oftransformative learning.
Resumo:
~ This study focuses on the process of self-directed learning that individuals go through as they adapt to new work situations. This is a study of how one critical incident, specifically the transition from a traditional office structure to a home office structure, affected employees and what their learning process was as they adapted to the new environment. This study has 3 educational foundations: adult learning, self-directed learning, and the social context from which the learning will occur. Six women and 2 men were interviewed approximately 1 year following the transition. Analysis of the data revealed 5 themes of: impacts of the self-directed environment on participants' personal lives, their roles, skill set, productivity, and the physical environment; support offered by the organization, family, and office administration; personal development, specific learning needs, and personal skills; boundaries as they relate to family and work; and skill set and orientation requirements of new home office employees. The findings revealed the learning processes of the 8 participants. The learning processes of these participants were discussed within a theoretical framework of the learners, their immediate surroundings, and the larger social environment. The results indicated that the transition from a directed work environment to a self directed work environment is a complex, interrelated process. An element found throughout the theoretical framework is that of control. A second critical element is the need for participants to have a clearly defined work role and an opportunity to engage in discussion with peers and the community. Further findings reinforced the importance of climate and found that the physical environment is a key factor in a successful selfdirected work environment. The findings of this study revealed that no one factor makes an individual function successfully in a self-directed work environment, but that it is a complex interplay among the leamer, their immediate surroundings, and the social environment that will have the greatest impact on success. Recommendations are made which can be used to guide organizational leaders in facilitating employees' transition from a directed to a self-directed work environment. Additionally, recommendations are made for further research in the area of self-directed work environments.
Resumo:
Higher education is rapidly trending toward the implementation of online (OL) courses and a blended facilitation style that incorporates both OL and face-to-face (FTF) classes. Though previous studies have explored the benefits and pitfalls of OL and blended learning formats from institutional, teacher, and student perspectives, scant research has examined learning outcomes for OL and FTF courses sharing identical content. This study used an explanatory mixed methods design—including pre- and post-test assessments, a questionnaire, and interviews—to explore similarities and differences in participant and teacher perceptions and outcomes (gain scores and final grades) of OL versus traditional FTF Communications courses, and to examine effects of students’ age and gender on learning preference and performance. Data collection occurred over a 4-month period and involved 183 student and 2 professor participants. The study used an SPSS program for data analysis and created a Microsoft Excel document to record themes derived from the questionnaire and interviews. Quantitative findings suggest there are no significant differences in gain scores, final grades, or other learning outcomes when comparing OL and FTF versions of identical Communications courses; however, qualitative findings indicate differences between facilitation styles based on student and professor perception. The study sheds light on student and faculty perceptions of facilitation styles and suggests areas for potential improvements in FTF- and OL-facilitated courses. The study ultimately recommends that students and faculty should have options when it comes to preferred delivery of course material.
Resumo:
This case study traces the evolution of library assignments for biological science students from paper-based workbooks in a blended (hands-on) workshop to blended learning workshops using online assignments to online active learning modules which are stand-alone without any face-to-face instruction. As the assignments evolved to adapt to online learning supporting materials in the form of PDFs (portable document format), screen captures and screencasting were embedded into the questions as teaching moments to replace face-to-face instruction. Many aspects of the evolution of the assignment were based on student feedback from evaluations, input from senior lab demonstrators and teaching assistants, and statistical analysis of the students’ performance on the assignment. Advantages and disadvantages of paper-based and online assignments are discussed. An important factor for successful online learning may be the ability to get assistance.
Resumo:
Dans une époque de changements des moyens de représentation et communication en architecture, cette recherche porte sur l’enseignement de la conception architecturale et plus spécifiquement sur l’apport que l’informatique pourrait avoir dans ce processus. En nous basant sur une méthodologie qualitative, exploratoire et participative, nous y procédons par enchainement de questions, celle de départ étant la suivante: Comment l’enseignement de la conception architecturale pourrait tirer avantage des moyens numériques? Notre objectif est de proposer des méthodes et des outils d’apprentissage aux étudiants en architecture pour enrichir leurs démarches de conception grâce à l’ordinateur. Après une revue de la littérature dans le domaine, et un approfondissement de l’étude sur le rôle des référents architecturaux et sur la conception intégrée, nous avons procédé à une observation exploratoire du travail des étudiants en atelier d’architecture. Ces premières étapes de la recherche ont permis de dégager des discordances entre les positions théoriques et la pratique en l’atelier, pour concrétiser ultérieurement la question de recherche. Dans le but de discerner des méthodes efficaces et innovatrices pour répondre aux discordances identifiées, nous avons engagé une étude de la littérature sur les théories cognitives par rapport aux connaissances, l’apprentissage et la conception. Certaines stratégies ont pu être définies, notamment la nécessité de représentation multimodale des référents architecturaux, l’importance de représenter le processus et non seulement le résultat, ainsi que l’avantage d’inciter les étudiants à travailler dans leur ‘zone proximale’ de développement. Suite à ces recherches, une méthode d’enseignement complémentaire a été définie. Elle propose aux étudiants des explorations de l’objet en conception basées sur la manipulation des savoir-faire architecturaux. Cette méthode a été opérationnalisée d’un point de vue pédagogique ainsi que didactique et mise à l’épreuve auprès des étudiants en atelier. Un prototype de librairie de référents architecturaux interactifs (LibReArchI) a été créé dans ce but. Elle a été conçue en tant qu’environnement de conception et espace de partage de savoir-faire entre étudiants et enseignants. Les principaux résultats de cette recherche démontrent le rôle positif de la méthode proposée pour le transfert des savoir-faire architecturaux lors de l’apprentissage en atelier. Son potentiel d’assister la conception intégrée et de stimuler l’émergence d’idées a été constaté. Au niveau théorique, un modèle d’un cycle du processus de design avec le numérique a été esquissé. En conclusion, des avenues de développements futurs de cette recherche sont proposées.
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior