954 resultados para Biological An Hydraulic Modelling
Resumo:
A purple acid phosphatase from sweet potato is the first reported example of a protein containing an enzymatically active binuclear Fe-Mn center. Multifield saturation magnetization data over a temperature range of 2 to 200 K indicates that this center is strongly antiferromagnetically coupled. Metal ion analysis shows an excess of iron over manganese. Low temperature EPR spectra reveal only resonances characteristic of high spin Fe(III) centers (Fe(III)-apo and Fe(III)-Zn(II)) and adventitious Cu(II) centers. There were no resonances from either Mn(II) or binuclear Fe-Mn centers. Together with a comparison of spectral properties and sequence homologies between known purple acid phosphatases, the enzymatic and spectroscopic data strongly indicate the presence of catalytic Fe(III)-Mn(II) centers in the active site of the sweet potato enzyme. Because of the strong antiferromagnetism it is likely that the metal ions in the sweet potato enzyme are linked via a mu -oxo bridge, in contrast to other known purple acid phosphatases in which a mu -hydroxo bridge is present. Differences in metal ion composition and bridging may affect substrate specificities leading to the biological function of different purple acid phosphatases.
Resumo:
Transthyretin is an essential protein responsible for the transport of thyroid hormones and retinol in human serum and is also implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases, Here we report the solid phase synthesis of the monomeric unit of a transthyretin analog (equivalent to 127 amino acids) using t-Boc chemistry and peptide ligation and its folding to form a functional 54-kDa tetramer, The monomeric unit of the protein was chemically synthesized in three parts (positions 1-51, 54-99, and 102-127) and ligated using a chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of transthyretin's native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, transthyretin antibody recognition, and thyroid hormone binding. Other folding products included a high molecular weight aggregate as well as a transient dimeric species. This represents one of the largest macromolecules chemically synthesized to date and demonstrates the potential of protein chemical synthesis for investigations of protein-ligand interactions.
Resumo:
The relative oviposition rate of the parasitoid Fopius arisanus (Sonan) was investigated across three frugivorous tephritid species, Bactrocera tryoni Froggart, Bactrocera jarvisi (Tryon) and Bactrocera cucumis French. Choice and no-choice tests were both used. The suitability of these three species for sustaining larval development and survival to the adult stage was also assessed. Fopius arisanus parasitized all three tephritid species. regardless of the method of exposure, but showed stronger preference for B. tryoni and B. jarvisi over B. cucumis. Superparasitism was extremely rare. Successful development of F. arisanus varied across host species. Bactrocera tryoni yielded significantly more parasitoids than B. jarvisi, but no wasps emerged from B. cucumis puparia. Tests were set up in replicated trials. but results were not homogeneous across trials. We discuss the host relationships of F. arisanus with reference to this variation and in relation to host suitability for larval development.
Resumo:
Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (delta N-15) and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO3-/NO2- and PO43-, compared to NH4+ in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant delta N-15 values ranged from 10.4-19.6 parts per thousand at the site of sewage discharge to 2.9-4.5 parts per thousand at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The delta N-15 isotopic signatures and free amino acid composition of inhabitant flora indicated that sewage N extended further from the creek mouths than shrimp N. The combination of physical/chemical and biological indicators used in this study was effective in distinguishing the composition and subsequent impacts of aquaculture and sewage effluent on the receiving waters. (C) 2001 Academic Press.
Resumo:
The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum. native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C. s. stercusmuscarum, M, s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration.
Resumo:
We used event-related functional magnetic resonance imaging (fMRI) to investigate neural responses associated with the semantic interference (SI) effect in the picture-word task. Independent stage models of word production assume that the locus of the SI effect is at the conceptual processing level (Levelt et al. [1999]: Behav Brain Sci 22:1-75), whereas interactive models postulate that it occurs at phonological retrieval (Starreveld and La Heij [1996]: J Exp Psychol Learn Mem Cogn 22:896-918). In both types of model resolution of the SI effect occurs as a result of competitive, spreading activation without the involvement of inhibitory links. These assumptions were tested by randomly presenting participants with trials from semantically-related and lexical control distractor conditions and acquiring image volumes coincident with the estimated peak hemodynamic response for each trial. Overt vocalization of picture names occurred in the absence of scanner noise, allowing reaction time (RT) data to be collected. Analysis of the RT data confirmed the SI effect. Regions showing differential hemodynamic responses during the SI effect included the left mid section of the middle temporal gyrus, left posterior superior temporal gyrus, left anterior cingulate cortex, and bilateral orbitomedial prefrontal cortex. Additional responses were observed in the frontal eye fields, left inferior parietal lobule, and right anterior temporal and occipital cortex. The results are interpreted as indirectly supporting interactive models that allow spreading activation between both conceptual processing and phonological retrieval levels of word production. In addition, the data confirm that selective attention/response suppression has a role in resolving the SI effect similar to the way in which Stroop interference is resolved. We conclude that neuroimaging studies can provide information about the neuroanatomical organization of the lexical system that may prove useful for constraining theoretical models of word production. (C) 2001 Wiley-Liss, Inc.
Resumo:
Sympatric individuals of Rattus fuscipes and Rattus leucopus, two Australian native rats from the tropical wet forests of north Queensland, are difficult to distinguish morphologically and are often confused in the field. When we started a study on fine-scale movements of these species, using microsatellite markers, we found that the species as identified in the field did not form coherent genetic groups. In this study, we examined the potential of an iterative process of genetic assignment to separate specimens from distinct (e.g. species, populations) natural groups. Five loci with extensive overlap in allele distributions between species were used for the iterative process. Samples were randomly distributed into two starting groups of equal size and then subjected to the test. At each iteration, misassigned samples switched groups, and the output groups from a given round of assignment formed the input groups for the next round. All samples were assigned correctly on the 10th iteration, in which two genetic groups were clearly separated. Mitochondrial DNA sequences were obtained from samples from each genetic group identified by assignment, together with those of museum voucher specimens, to assess which species corresponded to which genetic group. The iterative procedure was also used to resolve groups within species, adequately separating the genetically identified R. leucopus from our two sampling sites. These results show that the iterative assignment process can correctly differentiate samples into their appropriate natural groups when diagnostic genetic markers are not available, which allowed us to resolve accurately the two R. leucopus and R. fuscipes species. Our approach provides an analytical tool that may be applicable to a broad variety of situations where genetic groups need to be resolved.
Resumo:
We studied the foraging habitat of the endangered black-breasted button-quail (Turnix melanogaster) in 13 rainforest patches of an agricultural landscape (23.4 km(2)) in eastern Australia to assess its use of fragmented habitats outside conservation reserves. The species foraged only in the three largest patches (17.4, 40.0, 63.8 ha in size), all of which were connected to open eucalypt forest, and in intact rainforest. Occurrence of birds was greatest in the largest patch. The maximum number of individuals within the study area was estimated to be 22. Radio-tracking of nine birds revealed that three were resident in the largest patch for periods of over 100 days; no movements between patches were detected. Three radio-tagged birds were taken by avian and mammalian predators. Our results indicated that the long-term future of the species in agricultural landscapes is bleak and that management action is urgently needed to arrest its decline in these ecosystems, (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Numerous studies on the relationship between the structure and function of peptide agonists derived from the biologically active, C-terminal region of human C5a anaphylatoxin have been reported over the past decade. These studies have been performed with the objective of parlaying this structure-function information into the design of peptide/peptidomimetic modulators of C5a receptor (C5aR)-mediated function. In this review, we describe a rational approach for the development of conformationally biased, decapeptide agonists of C5a and described how these stabilized and specific conformational features relate to the expression of specific C5a-like activities in vitro and in vivo. The therapeutic potential of such response-selective C5a agonists is discussed and underscored by the results of one such response-selective C5a agonist that was used in vivo as an effective molecular adjuvant capable of generating antigen-specific humoral and cellular immune responses. Finally, we describe the synthesis of a new generation of highly response-selective, conformationally biased C5a agonist and discuss the in vitro and in vivo biologic results that so indicate this biologic selectivity.
Resumo:
Ancient mitochondrial DNA sequences were used for investigating the evolution of an entire clade of extinct vertebrates, the endemic tortoises (Cylindraspis) of the Mascarene Islands in the Indian Ocean. Mitochondrial DNA corroborates morphological evidence that there were five species of tortoise with the following relationships: Cylindraspis triserrata ((Cylindraspis vosmaeri and Cylindraspis peltastes) (Cylindraspis inepta and Cylindraspis indica)). Phylogeny indicates that the ancestor of the group first colonized Mauritius where speciation produced C. triserrata and the ancestor of the other species including a second sympatric Mauritian form, C. inepta. A propagule derived from this lineage colonized Rodrigues 590 km to the east, where a second within-island speciation took place producing the sympatric C. vosmaeri and C. peltastes. A recent colonization of Réunion 150 km to the southwest produced C. indica. In the virtual absence of predators, the defensive features of the shells of Mascarene tortoises were largely dismantled, apparently in two stages. 'Saddlebacked' shells with high fronts evolved independently on all three islands. This and other features, such as a derived jaw structure and small body size, may be associated with niche differentiation in sympatric species and may represent a striking example of parallel differentiation in a large terrestrial vertebrate. The history of Mascarene tortoises contrasts with that of the Galápagos, where only a single species is present and surviving populations are genetically much more similar. However, they too show some reduction in anti-predator mechanisms and multiple development of populations with saddlebacked shells.
Resumo:
The effects of the antihelmintic, ivermectin, were investigated in recombinantly expressed human alpha (1) homomeric and alpha (1)beta heteromeric glycine receptors (GlyRs), At low (0.03 muM) concentrations ivermectin potentiated the response to sub-saturating glycine concentrations, and at higher (greater than or equal to0.03 muM) concentrations it irreversibly activated both alpha (1) homomeric and alpha (1)beta heteromeric GlyRs. Relative to glycine-gated currents, ivermectin-gated currents exhibited a dramatically reduced sensitivity to inhibition by strychnine, picrotoxin, and zinc. The insensitivity to strychnine could not be explained by ivermectin preventing the access of strychnine to its binding site. Furthermore, the elimination of a known glycine- and strychnine-binding site by site-directed mutagenesis had little effect on ivermectin sensitivity, demonstrating that the ivermectin- and glycine-binding sites were not identical. Ivermectin strongly and irreversibly activated a fast-desensitizing mutant GlyR after it had been completely desensitized by a saturating concentration of glycine. Finally, a mutation known to impair dramatically the glycine signal transduction mechanism had little effect on the apparent affinity or efficacy of ivermectin, Together, these findings indicate that ivermectin activates the GlyR by a novel mechanism.
Resumo:
The activated sludge comprises a complex microbiological community. The structure (what types of microorganisms are present) and function (what can the organisms do and at what rates) of this community are determined by external physico -chemical features and by the influent to the sewage treatment plant. The external features we can manipulate but rarely the influent. Conventional control and operational strategies optimise activated sludge processes more as a chemical system than as a biological one. While optimising the process in a short time period, these strategies may deteriorate the long-term performance of the process due to their potentially adverse impact on the microbial properties. Through briefly reviewing the evidence available in the literature that plant design and operation affect both the structure and function of the microbial community in activated sludge, we propose to add sludge population optimisation as a new dimension to the control of biological wastewater treatment systems. We stress that optimising the microbial community structure and property should be an explicit aim for the design and operation of a treatment plant. The major limitations to sludge population optimisation revolve around inadequate microbiological data, specifically community structure, function and kinetic data. However, molecular microbiological methods that strive to provide that data are being developed rapidly. The combination of these methods with the conventional approaches for kinetic study is briefly discussed. The most pressing research questions pertaining to sludge population optimisation are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
In order to investigate the genetic and environmental antecedents of osteoarthritis (CA), self-report measures of joint pain, stiffness and swelling were obtained from a population-based sample of 1242 twin pairs over 50 years of age. In order to provide validation for these self-report measures, a subsample of 118 twin pairs were examined according to the American College of Rheumatology clinical and radiographic criteria for the classification of osteoarthritis. A variety of statistical methods were employed to identify the model derived from self-report variables which would provide optimal prediction of these standardised assessments, and structural equation modelling was used to determine the relative influences of genetic and environmental influences on the development of osteoarthritis. Significant genetic effects were found to contribute to osteoarthritis of the hands, hips and knees in women, with heritability estimates ranging from 30-46% depending on the site. In addition, the additive genetic effects contributing to osteoarthritis in various parts of the body were confirmed to be the same. Statistically significant familial aggregation of osteoarthritis in men was also observed, but it was not possible to determine whether this was due to genetic or shared environmental effects.