935 resultados para Biologia Sintetica, Promotori, Caratterizzazione Sperimentale


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Medulloblastoma (MB) is a paediatric malignant brain tumour, sensitive to ionizing radiations (IR). However radiotherapy has detrimental effects on long-term survivors and the tumour is incurable in a third of patients, due to intrinsic radioresistance. Alterations of the Wnt pathway distinguish a molecular subgroup of MBs and nuclear beta-catenin, indicative of activated Wnt, is associated with good outcome in MB. Therefore there are increasing evidences about Wnt involvement in radio-response: IR induce activation of Wnt signalling with nuclear translocation of beta-catenin in MB cell lines. We studied effects of Wnt pathway activation in a MB cell line with p53 wild-type: UW228-1. Cells were stably transfected with a beta-catenin constitutively active and assessed for growth curves, mortality rate, invasiveness and differentiation. Firstly, activation of Wnt pathway by itself induced a slower cell growth and a higher mortality. After IR treatment, nuclear beta-catenin further inhibited cell growth, increasing mortality. Cell invasiveness was strongly inhibited by Wnt activation. Furthermore, Wnt cell population was characterized by club shaped cells with long cytoplasmic extensions containing neurofilaments, suggesting a neural differentiation of this cell line. These findings suggest that nuclear beta-catenin may leads to a less aggressive phenotype and increases radio-sensitivity in MB, accounting for its favourable prognostic value. In the future, Wnt/beta-catenin signalling will be considered as a molecular therapeutic target to develop new drugs for the treatment of MB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’algoritmo per la previsione del Mega-Knock si inserisce all’interno di uno dei temi cardine dell’attuale ricerca nel campo motoristico: la minimizzazione del consumo di combustibile nei motori ad alto grado di sovralimentazione, sviluppati nell’ottica del downsizing. La possibilità di prevedere l’innescarsi del Mega-Knock consente di ottimizzare la definizione dell’obiettivo di titolo, evitando arricchimenti non necessari in un range di funzionamento del motore che frequentemente viene esplorato nella normale guida su strada. Si tratterà la possibilità di utilizzare una relazione empirica per cercare di arrivare alla previsione dell’insorgere della preaccensione, per poi ricorrere ad opportune strategie motore per evitare il verificarsi del fenomeno; il tutto tramite lo sviluppo di un algoritmo in ambiente MatLab-Simulink

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questo lavoro ha l’obbiettivo di valutare i risultati ottenuti su campioni stratificati sabbia/argilla attraverso l’applicazione della risonanza magnetica nucleare e di confrontare la risposta ottenuta tramite uno strumento di misura di laboratorio con quella di una sonda geofisica normalmente utilizzata per le analisi in pozzo. Tale lavoro si è reso necessario per comprendere le cause per cui la sonda CMR-Tool realizzata da Schlumberger non sia in grado di mettere in evidenza la stratificazione sabbia/argilla che caratterizza il bacino sedimentario dell’Adriatico in cui è presente un importante bacino di coltivazione di gas naturale. La tipica risposta NMR su una formazione stratificata sabbia/argilla è costituita da una distribuzione bimodale dei tempi di rilassamento che la sonda suddetta, nel caso specifico, non è in grado di produrre. Pertanto, per conoscere le cause per cui tale bimodalità della distribuzione non si presenti, è stato necessario confrontare i risultati derivanti dalla sonda CMR-Tool e quelli ottenuti con un rilassometro a basso campo (0,2T) presente nei laboratori LAGIRN della Facoltà di Ingegneria di Bologna. Le misure sono state eseguite su diversi campioni, stratificati e non, realizzati ad hoc con conformazioni diverse per i due strumenti. Si sono inoltre eseguite misure su 4 sabbie a diversa granulometria, per valutare l’andamento dei tempi di rilassamento in funzione della dimensione dei grani. A tal fine, il lavoro di tesi si struttura in cinque capitoli principali. Nei primi due capitoli si sono discusse in breve le metodologie e le tecniche di valutazione delle georisorse fluide e si sono introdotti i principi fisici della risonanza magnetica nucleare ed i meccanismi che regolano tale fenomeno nei mezzi porosi. Nel terzo e quarto capitolo sono descritte le applicazioni petrofisiche, le tecniche e le metodologie di indagine comunemente usate allo scopo di ricavare alcune grandezze fisiche di interesse e gli strumenti adoperati per ottenere le misure geofisiche in pozzo. Nell’ultimo capitolo sono invece esposti, in maniera completa e schematica, le prove sperimentali eseguite sia presso il laboratorio LAGIRN dell’Università di Bologna e presso quello Schlumberger di Pescara. Nella sua impostazione, il lavoro è stato sviluppato per essere studiato e compreso in maniera chiara, cercando di rendere la lettura la più semplice possibile, in relazione con la complessità caratteristica del fenomeno NMR. I risultati ottenuti hanno una valenza importante e di estrema attualità nell’ambito della valutazione delle georisorse fluide ed arricchiscono ancor di più le conoscenze riguardanti le applicazioni delle tecniche a risonanza magnetica nucleare sui mezzi porosi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis was carried out in the context of a co-tutoring program between Centro Ceramico Bologna (Italy) and Instituto di Tecnologia Ceramica, Castellón de la Plana (Spain). The subject of the thesis is the synthesis of silver nanoparticles and at their likely decorative application in the productive process of porcelain ceramic tiles. Silver nanoparticles were chosen as a case study, because metal nanoparticles are thermally stable, and they have non-linear optical properties when nano-structured, and therefore they develop saturated colours. The nanoparticles were synthesized by chemical reduction in aqueous solution, a method chosen because of its reduced working steps and energy costs. Besides such a synthesis method uses non-expensive and non-toxic raw material. By adopting this synthesis technique, it was also possible to control the dimension and the final shape of the nanoparticles. Several syntheses were carried out during the research work, modifying the molecular weight of the reducing agent and/or the firing temperature, in order to evaluate the influence such parameters have on the Ag-nanoparticles formation. The syntheses were monitored with the use of UV-Vis spectroscopy and the average dimension as well as the morphology of the nanoparticles was analysed by SEM. From the spectroscopic data obtained from each synthesis, a kinetic study was completed, relating the progress of the reaction to the two variables (ie temperature and molecular weight of the reducing agent). The aim was finding equations that allow the establishing of a relationship between the operating conditions during the synthesis and the characteristics of the final product. The next step was finding the best method of synthesis for the decorative application. For such a purpose the amount of nanoparticles, their average particle size, the shape and the agglomeration are considered. An aqueous suspension containing the nanoparticles is then sprayed over the fired ceramic tiles and they are subsequently thermally treated in conditions similar to the industrial one. The colorimetric parameters of the obtained ceramic tiles were studied and the method proved successful, giving the ceramic tiles stable and intense colours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The "sustainability" concept relates to the prolonging of human economic systems with as little detrimental impact on ecological systems as possible. Construction that exhibits good environmental stewardship and practices that conserve resources in a manner that allow growth and development to be sustained for the long-term without degrading the environment are indispensable in a developed society. Past, current and future advancements in asphalt as an environmentally sustainable paving material are especially important because the quantities of asphalt used annually in Europe as well as in the U.S. are large. The asphalt industry is still developing technological improvements that will reduce the environmental impact without affecting the final mechanical performance. Warm mix asphalt (WMA) is a type of asphalt mix requiring lower production temperatures compared to hot mix asphalt (HMA), while aiming to maintain the desired post construction properties of traditional HMA. Lowering the production temperature reduce the fuel usage and the production of emissions therefore and that improve conditions for workers and supports the sustainable development. Even the crumb-rubber modifier (CRM), with shredded automobile tires and used in the United States since the mid 1980s, has proven to be an environmentally friendly alternative to conventional asphalt pavement. Furthermore, the use of waste tires is not only relevant in an environmental aspect but also for the engineering properties of asphalt [Pennisi E., 1992]. This research project is aimed to demonstrate the dual value of these Asphalt Mixes in regards to the environmental and mechanical performance and to suggest a low environmental impact design procedure. In fact, the use of eco-friendly materials is the first phase towards an eco-compatible design but it cannot be the only step. The eco-compatible approach should be extended also to the design method and material characterization because only with these phases is it possible to exploit the maximum potential properties of the used materials. Appropriate asphalt concrete characterization is essential and vital for realistic performance prediction of asphalt concrete pavements. Volumetric (Mix design) and mechanical (Permanent deformation and Fatigue performance) properties are important factors to consider. Moreover, an advanced and efficient design method is necessary in order to correctly use the material. A design method such as a Mechanistic-Empirical approach, consisting of a structural model capable of predicting the state of stresses and strains within the pavement structure under the different traffic and environmental conditions, was the application of choice. In particular this study focus on the CalME and its Incremental-Recursive (I-R) procedure, based on damage models for fatigue and permanent shear strain related to the surface cracking and to the rutting respectively. It works in increments of time and, using the output from one increment, recursively, as input to the next increment, predicts the pavement conditions in terms of layer moduli, fatigue cracking, rutting and roughness. This software procedure was adopted in order to verify the mechanical properties of the study mixes and the reciprocal relationship between surface layer and pavement structure in terms of fatigue and permanent deformation with defined traffic and environmental conditions. The asphalt mixes studied were used in a pavement structure as surface layer of 60 mm thickness. The performance of the pavement was compared to the performance of the same pavement structure where different kinds of asphalt concrete were used as surface layer. In comparison to a conventional asphalt concrete, three eco-friendly materials, two warm mix asphalt and a rubberized asphalt concrete, were analyzed. The First Two Chapters summarize the necessary steps aimed to satisfy the sustainable pavement design procedure. In Chapter I the problem of asphalt pavement eco-compatible design was introduced. The low environmental impact materials such as the Warm Mix Asphalt and the Rubberized Asphalt Concrete were described in detail. In addition the value of a rational asphalt pavement design method was discussed. Chapter II underlines the importance of a deep laboratory characterization based on appropriate materials selection and performance evaluation. In Chapter III, CalME is introduced trough a specific explanation of the different equipped design approaches and specifically explaining the I-R procedure. In Chapter IV, the experimental program is presented with a explanation of test laboratory devices adopted. The Fatigue and Rutting performances of the study mixes are shown respectively in Chapter V and VI. Through these laboratory test data the CalME I-R models parameters for Master Curve, fatigue damage and permanent shear strain were evaluated. Lastly, in Chapter VII, the results of the asphalt pavement structures simulations with different surface layers were reported. For each pavement structure, the total surface cracking, the total rutting, the fatigue damage and the rutting depth in each bound layer were analyzed.