1000 resultados para Biodiesel composition
Resumo:
Pursuant to Iowa Code section 307.20, the biodiesel fuel revolving fund (Fund) was created and is to be used to purchase biodiesel fuel for use in the Department of Transportation’s vehicles. The act directed that the Fund receive money from the sale of EPAct credits banked by the DOT on the effective date of the act, moneys appropriated by the General Assembly, and any other monies obtained or accepted by the DOT for deposit in the Fund. This report is of the expenditures made from the Fund during FY 2014.
Resumo:
Mississippi Tialley-type zinc-lead deposits and ore occurrences in the San Vicente belt are hosted in dolostones of the eastern Upper Triassic to Lower Jurassic Pucara basin, central Peru. Combined inorganic and organic geochemical data from 22 sites, including the main San Vicente deposit, minor ore occurrences, and barren localities, provide better understanding of fluid pathways and composition, ore precipitation mechanisms, Eh-pH changes during mineralization, and relationships between organic matter and ore formation. Ore-stage dark replacement dolomite and white sparry dolomite are Fe and rare earth element (REE) depleted, and Mn enriched, compared to the host dolomite. In the main deposit, they display significant negative Ce and probably Eu anomalies. Mixing of an incoming hot, slightly oxidizing, acidic brine (H2CO3 being the dominant dissolved carbon species), probably poor in REE and Fe, with local intraformational, alkaline, reducing waters explains the overall carbon and oxygen isotope variation and the distributions of REE and other trace elements in the different hydrothermal carbonate generations. The incoming ore fluid flowed through major aquifers, probably basal basin detrital units, with limited interaction with the carbonate host rocks. The hydrothermal carbonates show a strong regional chemical homogeneity, indicating access of the ore fluids by interconnected channelways near the ore occurrences. Negative Ce anomalies in the main deposit, that are absent at the district scale, indicate local ore-fluid chemical differences. Oxidation of both migrated and indigenous hydrocarbons by the incoming fluid provided the local reducing conditions necessary for sulfate reduction to H2S, pyrobitumen precipitation, and reduction of Eu3+ to Eu2+. Fe-Mn covariations, combined with the REE contents of the hydrothermal carbonates, are consistent with the mineralizing system shifting from reducing/rock-dominated to oxidizing/fluid-dominated conditions following ore deposition. Sulfate and sulfide sulfur isotopes support sulfide origin from evaporite-derived sulfate by thermochemical organic reduction; further evidence includes the presence of C-13-depleted calcite cements (similar to-12 parts per thousand delta(13)C) as sulfate pseudomorphs, elemental sulfur, altered organic matter in the host dolomite, and isotopically heavier, late, solid bitumen. Significant alteration of the indigenous and extrinsic hydrocarbons, with absent bacterial membrane biomarkers (hopanes) is observed. The light delta(34)S of sulfides from small mines and occurrences compared to the main deposit reflect a local contribution of isotopically light sulfur, evidence of local differences in the ore-fluid chemistry.
Resumo:
Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.
Resumo:
The objective of this work was to evaluate the efficiency of a new method, developed for predicting density and floristic composition of weed communities in field crops. Based on the use of solaria (100 mm transparent plastic tarps lying on the soil) to stimulate weed seedlings emergence, the method was tested in Tandil, Argentina, from 1998 to 2001. The system involved corn and sunflower in commercial no-till system. Major weeds in the experiments included Digitaria sanguinalis, Setaria verticillata and S. viridis, which accounted for 98% of the weed community in the three years of experiments since 1998. Large numbers of Tagetes minuta, Chenopodium album and Ammi majus were present in 2001. Comparison of weed communities under solaria with communities in field crops indicated that the method is useful for predicting the presence and density of some major weed species, at both high and low densities, of individuals in areas of 10 ha using only five solaria. Low density of weed species makes the method particularly useful to help deciding the time for herbicide applications to avoid soil contamination.
Resumo:
Understanding how plants sense and respond to heat stress is central to improve crop tolerance and productivity. Recent findings in Physcomitrella patensdemonstrated that the controlled passage of calcium ions across the plasma membrane regulates the heat shock response (HSR). To investigate the effect of membrane lipid composition on the plant HSR, we acclimated P. patens to a slightly elevated yet physiological growth temperature and analysed the signature of calcium influx under a mild heat shock. Compared to tissues grown at 22°C, tissues grown at 32°C had significantly higher overall membrane lipid saturation level and, when submitted to a short heat shock at 35°C, displayed a noticeably reduced calcium influx and a consequent reduced heat shock gene expression. These results show that temperature differences, rather than the absolute temperature, determine the extent of the plant HSR and indicate that membrane lipid composition regulates the calcium-dependent heat-signaling pathway.
Resumo:
Membrane-aerated biofilm reactors performing autotrophic nitrogen removal can be successfully applied to treat concentrated nitrogen streams. However, their process performance is seriously hampered by the growth of nitrite oxidizing bacteria (NOB). In this work we document how sequential aeration can bring the rapid and long-term suppression of NOB and the onset of the activity of anaerobic ammonium oxidizing bacteria (AnAOB). Real-time quantitative polymerase chain reaction analyses confirmed that such shift in performance was mirrored by a change in population densities, with a very drastic reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal
Resumo:
The objective of this work was to evaluate the chemical and physical characteristics of grains of soybean (Glycine max) cultivars for food processing. The soybean cultivars evaluated were: grain-type - BRS 133 and BRS 258; food-type - BRS 213 (null lipoxygenases), BRS 267 (vegetable-type) and BRS 216 (small grain size). BRS 267 and BRS 216 cultivars showed higher protein content, indicating that they could promote superior nutritional value. BRS 213 cultivar showed the lowest lipoxygenase activity, and BRS 267, the lowest hexanal content. These characteristics can improve soyfood flavor. After cooking, BRS 267 cultivar grains presented a higher content of aglycones (more biologically active form of isoflavones) and oleic acid, which makes it proper for functional foods and with better stability for processing, and also showed high content of fructose, glutamic acid and alanine, compounds related to the soybean mild flavor. Because of its large grain size, BRS 267 is suitable for tofu and edamame, while small-grain-sized BRS 216 is good for natto and for soybean sprouts production. BRS 216 and BRS 213 cultivars presented shorter cooking time, which may be effective for reducing processing costs.
Resumo:
The objective of this work was to evaluate the species composition and functional groups of ants in nonagricultural (NA) and in irrigated areas (S, seasonal irrigation; P, irrigation with well water; W, irrigation with wastewater) in an arid agricultural region in central Mexico, throughout 2005 and 2006. A total of 52,358 ants belonging to 6 subfamilies, 21 genera and 39 species was collected using pitfall traps. The species best represented in all plots were: Forelius pruinosus, Pheidole obtusospinosa, Monomorium minimum and Dorymyrmex spp. NA plots recorded the highest density of ants. The highest values for diversity (H') and equitativity (J') were recorded in NA and P plots, while the lowest were recorded in W plots. Cluster analysis showed two different groups regarding species composition: NA-S and W-P. Functional groups recorded were: dominant Dolichoderinae, three species; subordinate Camponotini, five species; hot climate specialists, three species; tropical climate specialists, seven species; cold climate specialists, five species; cryptic species, one species; opportunists, six species; generalized Myrmicinae, nine species. Agricultural activity affects the structure of the ant community with epiedaphic forage, and the constant use of irrigation wastewater in conjunction with intense agricultural practices has negative effect upon species richness of epiedaphic ants.
Resumo:
INTRODUCTION: Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. METHODS: We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. RESULTS: Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. CONCLUSIONS: CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.
Resumo:
Background Enzymatic biodiesel is becoming an increasingly popular topic in bioenergy literature because of its potential to overcome the problems posed by chemical processes. However, the high cost of the enzymatic process still remains the main drawback for its industrial application, mostly because of the high price of refined oils. Unfortunately, low cost substrates, such as crude soybean oil, often release a product that hardly accomplishes the final required biodiesel specifications and need an additional pretreatment for gums removal. In order to reduce costs and to make the enzymatic process more efficient, we developed an innovative system for enzymatic biodiesel production involving a combination of a lipase and two phospholipases. This allows performing the enzymatic degumming and transesterification in a single step, using crude soybean oil as feedstock, and converting part of the phospholipids into biodiesel. Since the two processes have never been studied together, an accurate analysis of the different reaction components and conditions was carried out. Results Crude soybean oil, used as low cost feedstock, is characterized by a high content of phospholipids (900 ppm of phosphorus). However, after the combined activity of different phospholipases and liquid lipase Callera Trans L, a complete transformation into fatty acid methyl esters (FAMEs >95%) and a good reduction of phosphorus (P <5 ppm) was achieved. The combination of enzymes allowed avoidance of the acid treatment required for gums removal, the consequent caustic neutralization, and the high temperature commonly used in degumming systems, making the overall process more eco-friendly and with higher yield. Once the conditions were established, the process was also tested with different vegetable oils with variable phosphorus contents. Conclusions Use of liquid lipase Callera Trans L in biodiesel production can provide numerous and sustainable benefits. Besides reducing the costs derived from enzyme immobilization, the lipase can be used in combination with other enzymes such as phospholipases for gums removal, thus allowing the use of much cheaper, non-refined oils. The possibility to perform degumming and transesterification in a single tank involves a great efficiency increase in the new era of enzymatic biodiesel production at industrial scale.