948 resultados para Biochemical and Biomolecular Engineering
Resumo:
Many students and professionals in chemistry and chemical engineering related the name Kwong with one of the most remarkable equations of state with two parameters. In the same way, very few people know who Kowng was. This article shows some of the unknown personal and professional facts of Joseph Neng Shun Kwong, a person who devoted almost four decades of his life to the industrial research in the adhesives industry.
Resumo:
Degenerative myxomatous mitral valve (DMMV) is a heart disease of high incidence in small animal clinical medicine, affecting mainly older dogs and small breeds. Thus, a scientific investigation was performed in order to evaluate the clinical use of the medicines furosemide and enalapril maleate in dogs with this disease in CHF functional class Ib before and after the treatment was established. For this purpose 16 dogs with the given valve disease were used, separated into two groups: the first received furosemide (n=8) and the second received enalapril maleate (n=8) throughout 56 days. The dogs were evaluated in four stages (T0, T14, T28 and T56 day) in relation to clinical signs, hematological, biochemical and serum assessment, which included serum angiotensin converting enzyme (ACE) and aldosterone, as well as radiography, electrocardiography, Doppler-echocardiography and blood pressure. The results regarding the clinical, hematological and serum chemistry evaluations revealed no significant changes in both groups, but significant reductions in the values of ACE and aldosterone in the group receiving enalapril maleate were verified. The radiographic examination revealed reductions of VHS values and variable Pms wave of the electrocardiogram in both groups, but no changes in blood pressure values were identified. The echocardiogram showed a significant decrease of the variables LVDd/s in the studied groups and the FS% in animals that received only enalapril. Therefore, analysis of results showed that monotherapy based on enalapril maleate showed better efficiency of symptoms control in patients with CHF functional class Ib.
Resumo:
The hypothesis of the role of iron overload associated with HFE gene mutations in the pathogenesis of nonalcoholic steatohepatitis (NASH) has been raised in recent years. In the present study, biochemical and histopathological evidence of iron overload and HFE mutations was investigated in NASH patients. Thirty-two NASH patients, 19 females (59%), average 49.2 years, 72% Caucasians, 12% Mulattoes and 12% Asians, were submitted to serum aminotransferase and iron profile determinations. Liver biopsies were analyzed for necroinflammatory activity, architectural damage and iron deposition. In 31 of the patients, C282Y and H63D mutations were tested by PCR-RFLP. Alanine aminotransferase levels were increased in 30 patients, 2.42 ± 1.12 times the upper normal limit on average. Serum iron concentration, transferrin saturation and ferritin averages were 99.4 ± 31.3 g/dl, 33.1 ± 12.7% and 219.8 ± 163.8 µg/dl, respectively, corresponding to normal values in 93.5, 68.7 and 78.1% of the patients. Hepatic siderosis was observed in three patients and was not associated with architectural damage (P = 0.53) or with necroinflammatory activity (P = 0.27). The allelic frequencies (N = 31) found were 1.6 and 14.1% for C282Y and H63D, respectively, which were compatible with those described for the local population. In conclusion, no evidence of an association of hepatic iron overload and HFE mutations with NASH was found. Brazilian NASH patients comprise a heterogeneous group with many associated conditions such as hyperinsulinism, environmental hepatotoxin exposure and drugs, but not hepatic iron overload, and their disease susceptibility could be related to genetic and environmental features other than HFE mutations.
Resumo:
Human papillomavirus genomes are classified into molecular variants when they present more than 98% of similarity to the prototype sequence within the L1 gene. Comparative nucleotide sequence analyses of these viruses have elucidated some features of their phylogenetic relationship. In addition, human papillomavirus intratype variability has also been used as an important tool in epidemiological studies of viral transmission, persistence and progression to clinically relevant cervical lesions. Until the present, little has been published concerning the functional significance of molecular variants. It has been shown that nucleotide variability within the long control region leads to differences in the binding affinity of some cellular transcriptional factors and to the enhancement of the expression of E6 and E7 oncogenes. Furthermore, in vivo and in vitro studies revealed differences in E6 and E7 biochemical and biological properties among molecular variants. Nevertheless, further correlation with additional functional information is needed to evaluate the significance of genome intratypic variability. These results are also important for the development of vaccines and to determine the extent to which immunization with L1 virus-like particles of one variant could induce antibodies that cross-neutralize other variants.
Resumo:
The regulation of bladder function is influenced by central serotonergic modulation. Several genetic polymorphisms related to serotonin control have been described in the literature. T102C polymorphism of the serotonin receptor 2A gene (5-HT2A) has been shown to be associated with certain diseases such as non-fatal acute myocardial infarction, essential hypertension, and alcoholism. In the present study, we examined the association between 5-HT2A gene polymorphism and urinary incontinence in the elderly. A case-control study was performed in 298 elderly community dwellers enrolled in the Gravataí-GENESIS Project, Brazil, which studies gene-environmental interactions in aging and age-related diseases. Clinical, physical, biochemical, and molecular analyses were performed on volunteers. 5-HT2A genotyping was determined by PCR-RFLP techniques using the HpaII restriction enzyme. The subjects had a mean age of 68.05 ± 6.35 years (60-100 years), with 16.9% males and 83.1% females. The C allele frequency was 0.494 and the T allele frequency was 0.506. The CC genotype frequency was 21.78%, the CT genotype frequency was 55.24% and the TT genotype frequency was 22.98%. We found an independent significant association between the TT genotype (35.7%) and urinary incontinence (OR = 2.06, 95%CI = 1.16-3.65). Additionally, urinary incontinence was associated with functional dependence and systolic hypertension. The results suggest a possible genetic influence on urinary incontinence involving the serotonergic pathway. Further investigations including urodynamic evaluation will be performed to better explain our findings.
Resumo:
Angiotensin-converting enzymes 1 (ACE1) and 2 (ACE2) are key enzymes of the renin-angiotensin system, which act antagonistically to regulate the levels of angiotensin II (Ang II) and Ang-(1-7). Considerable data show that ACE1 acts on normal skeletal muscle functions and architecture. However, little is known about ACE1 levels in muscles with different fiber compositions. Furthermore, ACE2 levels in skeletal muscle are not known. Therefore, the purpose of this study was to characterize protein expression and ACE1 and ACE2 activities in the soleus and plantaris muscles. Eight-week-old female Wistar rats (N = 8) were killed by decapitation and the muscle tissues harvested for biochemical and molecular analyses. ACE1 and ACE2 activities were investigated by a fluorometric method using Abz-FRK(Dnp)P-OH and Mca-YVADAPK(Dnp)-OH fluorogenic substrates, respectively. ACE1 and ACE2 protein expression was analyzed by Western blot. ACE2 was expressed in the skeletal muscle of rats. There was no difference between the soleus (type I) and plantaris (type II) muscles in terms of ACE2 activity (17.35 ± 1.7 vs 15.09 ± 0.8 uF·min-1·mg-1, respectively) and protein expression. ACE1 activity was higher in the plantaris muscle than in the soleus (71.5 ± 3.9 vs 57.9 ± 1.1 uF·min-1·mg-1, respectively). Moreover, a comparative dose-response curve of protein expression was established in the soleus and plantaris muscles, which indicated higher ACE1 levels in the plantaris muscle. The present findings showed similar ACE2 levels in the soleus and plantaris muscles that might result in a similar Ang II response; however, lower ACE1 levels could attenuate Ang II production and reduce bradykinin degradation in the soleus muscle compared to the plantaris. These effects should enhance the aerobic capacity necessary for oxidative muscle activity.
Resumo:
Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272) was expressed in Escherichia coli without His-tag or any other tag used to facilitate recombinant protein purification. The recombinant protein was expressed in the soluble form, and the purification was based on ion exchange (anionic and cationic) and hydrophobic interactions. The final purification yielded 3 mg soluble LipL32(21-272) per liter of the induced culture. Antiserum produced against the recombinant protein was effective to detect native LipL32 from cell extracts of several Leptospira serovars. The purified recombinant LipL32(21-272) produced by this protocol can be used for structural, biochemical and functional studies and avoids the risk of possible interactions and interferences of the tags commonly used as well as the time consuming and almost always inefficient methods to cleave these tags when a tag-free LipL32 is needed. Non-tagged LipL32 may represent an alternative antigen for biochemical studies, for serodiagnosis and for the development of a vaccine against leptospirosis.
Resumo:
Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.
Resumo:
The rat models currently employed for studies of nerve regeneration present distinct disadvantages. We propose a new technique of stretch-induced nerve injury, used here to evaluate the influence of gabapentin (GBP) on nerve regeneration. Male Wistar rats (300 g; n=36) underwent surgery and exposure of the median nerve in the right forelimbs, either with or without nerve injury. The technique was performed using distal and proximal clamps separated by a distance of 2 cm and a sliding distance of 3 mm. The nerve was compressed and stretched for 5 s until the bands of Fontana disappeared. The animals were evaluated in relation to functional, biochemical and histological parameters. Stretching of the median nerve led to complete loss of motor function up to 12 days after the lesion (P<0.001), compared to non-injured nerves, as assessed in the grasping test. Grasping force in the nerve-injured animals did not return to control values up to 30 days after surgery (P<0.05). Nerve injury also caused an increase in the time of sensory recovery, as well as in the electrical and mechanical stimulation tests. Treatment of the animals with GBP promoted an improvement in the morphometric analysis of median nerve cross-sections compared with the operated vehicle group, as observed in the area of myelinated fibers or connective tissue (P<0.001), in the density of myelinated fibers/mm2 (P<0.05) and in the degeneration fragments (P<0.01). Stretch-induced nerve injury seems to be a simple and relevant model for evaluating nerve regeneration.
Resumo:
The aim of this work was to study techniques to extract and purify of anthocyanins from purple-blue potato. This topic was determined as a master’s thesis and it was done in collaboration with the Food Chemistry and Food Development Department of University of Turku and Department of Chemical and Process Engineering at Lappeenranta University of Technology. At first, purple-blue potatoes were pretreated in four types of boiled, raw, freeze-dried and dried boiled potato for extraction. They were mixed with aqueous acidified ethanol (ethanol:water:acetic acid 40%:53%:7% v/v) for conventional extraction. Boiled potato was selected as a best pretreated potato. Different ethanol concentration and extraction time were examined and the mixture of 80% in 24 h resulted in maximum anthocyanin content (132.23 mg/L). As conventional extraction method of anthocyanins was non-selective, some of impurities such as free sugars might accelerate anthocyanin degradation. Therefore, to obtain anthocyanins in purified form, adsorption as a promising selective method was used to recovery and isolate anthocyanins. It was carried out with six adsorbents. Among those, Amberlite XAD-7HP, a nonionic acrylic ester adsorbent, was found to have the best performance. In an adsorption column, flow rate of 3 mL/min was selected as the loading flow rate among four tested flow rates. Eluent volume and flow rate were 3 BV of aqueous acidified ethanol (75%, v/v) and 1 mL/min for desorption. The quantification of the total anthocyanin contents was performed by pH-differential method using UV-vis spectrophotometer. The resulting anthocyanin solution after purification was almost free from free sugars which were the major cause for degradation of anthocyanins. The average anthocyanin concentration in the purified and concentrated sample was obtained 1752.89 mg/L.
Resumo:
Global energy consumption has been increasing yearly and a big portion of it is used in rotating electrical machineries. It is clear that in these machines energy should be used efficiently. In this dissertation the aim is to improve the design process of high-speed electrical machines especially from the mechanical engineering perspective in order to achieve more reliable and efficient machines. The design process of high-speed machines is challenging due to high demands and several interactions between different engineering disciplines such as mechanical, electrical and energy engineering. A multidisciplinary design flow chart for a specific type of high-speed machine in which computer simulation is utilized is proposed. In addition to utilizing simulation parallel with the design process, two simulation studies are presented. The first is used to find the limits of two ball bearing models. The second is used to study the improvement of machine load capacity in a compressor application to exceed the limits of current machinery. The proposed flow chart and simulation studies show clearly that improvements in the high-speed machinery design process can be achieved. Engineers designing in high-speed machines can utilize the flow chart and simulation results as a guideline during the design phase to achieve more reliable and efficient machines that use energy efficiently in required different operation conditions.
A biochemical predictor of performance during mesophilic anaerobic fermentation of starch wastewater
Resumo:
The aim of this study was to determine the potential of biochemical parameters, such as enzyme activity and adenosine triphosphate (ATP) levels, as monitors of process performance in the Upflow Anaerobic Sludge Blanket (UASB) reactor utilizing a starch wastewater. The acid and alkaline phosphatase activity and the ATP content of the UASB sludge were measured in response to changes in flow rate and nutrient loading. Conventional parameters of process performance, such as gas production, acetic acid production, COD, phosphorus, nitrogen and suspended solids loadings and % COD removal were also monitored. The response of both biochemical and conventional parameters to changing process conditions was then compared. Alkaline phosphatase activity exhibited the highest activity over the entire study perioda A high suspended solids loading was observed to upset the system in terms of gas production, acetic acid production and % COD removala The initial rate of increase in alkaline phosphatase activity following an increase in loading was four times as great during process upset than under conditions of good performance. The change in enzyme actiVity was also more sensitive to process upset than changes in acetic acid production. The change in ATP content of the sludge with time suggested that enzyme actiVity was changing independently of the actual viable biomass present. The bacterial composition of the anaerobic sludge granules was similar to that of other sludge bed systems, at the light and scanning electron microscope level. Isolated serum bottle cultures produced several acids involved in anaerobic carbohydrate metabolism. The overall performance of the UASB system indicated that higher loadings of soluble nutrients could have been tolerated by the system.
Resumo:
Correspondence, flyers and clippings regarding the Blenkhorn and Sawle Company.
Resumo:
INTRODUCTION: Il existe peu d’évidences sur l’association entre le taux de chômage dans le milieu résidentiel (CR) et le risque de maladies cardiovasculaires parmi les résidents de milieux urbains. De plus, on ne sait pas si ce lien diffère entre les deux sexes. Cette thèse a pour objectif de déterminer la direction et la taille de l’association entre le CR et le risque de maladies cardiovasculaires, et d’examiner si cette association varie en fonction du sexe. MÉTHODES: Un sous-échantillon de 342 participants de l’Étude sur les habitudes de vie et la santé dans les quartiers montréalais a rapporté ses habitudes de vie et sa situation socio-économique. Des mesures biologiques et anthropométriques ont été recueillies par une infirmière. Le CR a été opérationnalisé en fonction d’une zone-tampon d’un rayon de 250 m centrée sur la résidence de chacun des participants à l’aide d’un Système d’Information Géographique (SIG). Des équations d’estimation généralisées ont été utilisées afin d’estimer l’association entre le CR et l’Indice de Masse Corporelle (IMC) et un score cumulatif de Risque Cardio-métabolique (RC) représentant la présence de valeurs élevées de cholestérol total, de triglycérides, de lipoprotéines de haute densité et d’hémoglobine glyquée. RÉSULTATS: Après ajustement pour l’âge, le sexe, le tabagisme, les comportements de santé et le statut socio-économique, le fait de vivre dans un endroit classé dans le 3e ou 4e quartile de CR était associé avec un IMC plus élevé (beta pour Q4 = 2.1 kg/m2, IC 95%: 1.02-3.20; beta pour Q3 = 1.5 kg/m2, IC 95%: 0.55-2.47) et un taux plus élevé de risque cardiovasculaires Risque Relatif [RR pour Q4 = 1.82 (IC 95 %: 1.35-2.44); RR pour Q3 = 1.66 (IC 95%: 1.33-2.06)] par rapport au 1er quartile. L'interaction entre le sexe et le CR révèle une différence absolue d’IMC de 1.99 kg/m2 (IC 95%: 0.00-4.01) et un risque supérieur (RR=1.39; IC 95%: 1.06-1.81) chez les femmes par rapport aux hommes. CONCLUSIONS: Le taux de chômage dans le milieux résidentiel est associé à un plus grand risque de maladies cardiovasculaires, mais cette association est plus prononcée chez les femmes.
Resumo:
L’électrofilage est une technique permettant de fabriquer des fibres polymériques dont le diamètre varie entre quelques nanomètres et quelques microns. Ces fibres ont donc un rapport surface/volume très élevé. Les fibres électrofilées pourraient trouver des applications dans le relargage de médicaments et le génie tissulaire, comme membranes et capteurs chimiques, ou dans les nanocomposites et dispositifs électroniques. L’électrofilage était initialement utilisé pour préparer des toiles de fibres désordonnées, mais il est maintenant possible d’aligner les fibres par l’usage de collecteurs spéciaux. Cependant, il est important de contrôler non seulement l’alignement macroscopique des fibres mais aussi leur orientation au niveau moléculaire puisque l’orientation influence les propriétés mécaniques, optiques et électriques des polymères. Les complexes moléculaires apparaissent comme une cible de choix pour produire des nanofibres fortement orientées. Dans les complexes d’inclusion d’urée, les chaînes polymères sont empilées dans des canaux unidimensionnels construits à partir d’un réseau tridimensionnel de molécules d’urée liées par des ponts hydrogène. Ainsi, les chaînes polymère sonts très allongées à l’échelle moléculaire. Des nanofibres du complexe PEO-urée ont été préparées pour la première fois par électrofilage de suspensions et de solutions. Tel qu’attendu, une orientation moléculaire inhabituellement élevée a été observée dans ces fibres. De tels complexes orientés pourraient être utilisés à la fois dans des études fondamentales et dans la préparation de matériaux hiérarchiquement structurés. La méthode d’électrofilage peut parfois aussi être utilisée pour préparer des matériaux polymériques métastables qui ne peuvent pas être préparés par des méthodes conventionnelles. Ici, l’électrofilage a été utilisé pour préparer des fibres des complexes stables (α) et "métastables" (β) entre le PEO et l’urée. La caractérisation du complexe β, qui était mal connu, révèle un rapport PEO:urée de 12:8 appartenant au système orthorhombique avec a = 1.907 nm, b = 0.862 nm et c = 0.773 nm. Les chaînes de PEO sont orientées selon l’axe de la fibre. Leur conformation est significativement affectée par les ponts hydrogène. Une structure en couches a été suggérée pour la forme β, plutôt que la structure conventionnelle en canaux adoptée par la forme α. Nos résultats indiquent que le complexe β est thermodynamiquement stable avant sa fonte et peut se transformer en forme α et en PEO liquide par un processus de fonte et recristallisation à 89 ºC. Ceci va dans le sens contraire aux observations faites avec le complexe β obtenu par trempe du complexe α fondu. En effet, le complexe β ainsi obtenu est métastable et contient des cristaux d’urée. Il peut subir une transition de phases cinétique solide-solide pour produire du complexe α dans une vaste gamme de températures. Cette transition est induite par un changement de conformation du PEO et par la formation de ponts hydrogène intermoléculaires entre l’urée et le PEO. Le diagramme de phases du système PEO-urée a été tracé sur toute la gamme de compositions, ce qui a permis d’interpréter la formation de plusieurs mélanges qui ne sont pas à l’équilibre mais qui sont été observés expérimentalement. La structure et le diagramme de phases du complexe PEO-thiourée, qui est aussi un complexe très mal connu, ont été étudiés en détail. Un rapport molaire PEO :thiourée de 3:2 a été déduit pour le complexe, et une cellule monoclinique avec a = 0.915 nm, b = 1.888 nm, c = 0.825 nm et β = 92.35º a été déterminée. Comme pour le complexe PEO-urée de forme β, une structure en couches a été suggérée pour le complexe PEO-thiourée, dans laquelle les molécules de thiourée seraient disposées en rubans intercalés entre deux couches de PEO. Cette structure en couches pourrait expliquer la température de fusion beaucoup plus faible des complexes PEO-thiourée (110 ºC) et PEO-urée de forme β (89 ºC) en comparaison aux structures en canaux du complexe PEO-urée de forme α (143 ºC).