951 resultados para Berengar, of Tours, ca. 1000-1088.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferromanganese concretions from ten stations in the Barents Sea have been analysed for 24 elements. The deposits occur as discoidal and flat concretions and as coatings, in the latter case on lithified or detrital material or as extensive pavements on the Svalbard shelf. The concretions are compositionally similar to Baltic concretions but differ considerably from deep-ocean nodules, particularly in Cu, Ni and Co contents. Statistical analyses reveal distinct correlations between Mn, Na, Ba, Ni and Cu; the Mn-rich coatings showed enrichment of Mo, Zn and possibly Co in a Mn-phase. The iron phase holds high concretions of P and As. Two iron-rich concretions with high contents of P, Ca, Sr, Y, Yb and La were found east and northeast of Spitsbergen Banken, probably indicating upwelling of nutrient-rich, cold polar water along the Svalbard shelf.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

First-principles electronic structure methods are used to predict the rate of n-type carrier scattering due to phonons in highly-strained Ge. We show that strains achievable in nanoscale structures, where Ge becomes a direct bandgap semiconductor, cause the phonon-limited mobility to be enhanced by hundreds of times that of unstrained Ge, and over a thousand times that of Si. This makes highly tensile strained Ge a most promising material for the construction of channels in CMOS devices, as well as for Si-based photonic applications. Biaxial (001) strain achieves mobility enhancements of 100 to 1000 with strains over 2%. Low temperature mobility can be increased by even larger factors. Second order terms in the deformation potential of the Gamma valley are found to be important in this mobility enhancement. Although they are modified by shifts in the conduction band valleys, which are caused by carrier quantum confinement, these mobility enhancements persist in strained nanostructures down to sizes of 20 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS) were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC), sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS) and was also found to comprise organic aerosol as the most abundant species (62 %), followed by nitrate (15 %), sulphate (9 %) and ammonium (9 %), and chloride (5 %). Positive matrix factorization (PMF) was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA) comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA) comprised 18 %, "biomass burning" organic aerosol (BBOA) comprised 23 %, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA) comprised 21 %, and finally a species type characterized by primary m/z peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA), but possessing different diurnal variations to what would be expected for cooking activities, contributed 18 %. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this research was to determine the composition of boron deposits produced by pyrolysis of boron tribromide, and to use the results to (a) determine the experimental conditions (reaction temperature, etc.) necessary to produce alpha-rhombohedral boron and (b) guide the development/refinement of the pyrolysis experiments such that large, high purity crystals of alpha-rhombohedral boron can be produced with consistency. Developing a method for producing large, high purity alpha-rhombohedral boron crystals is of interest because such crystals could potentially be used to achieve an alpha-rhombohedral boron based neutron detector design (a solid-state detector) that could serve as an alternative to existing neutron detector technologies. The supply of neutron detectors in the United States has been hampered for a number of years due to the current shortage of helium-3 (a gas used in many existing neutron detector technologies); the development of alternative neutron detector technology such as an alpha-rhombohedral boron based detector would help provide a more sustainable supply of neutron detectors in this country. In addition, the prospect/concept of an alpha-rhombohedral boron based neutron detector is attractive because it offers the possibility of achieving a design that is smaller, longer life, less power consuming, and potentially more sensitive than existing neutron detectors. The main difficulty associated with creating an alpha-rhombohedral boron based neutron detector is that producing large, high purity crystals of alpha-rhombohedral boron is extremely challenging. Past researchers have successfully made alpha-rhombohedral boron via a number of methods, but no one has developed a method for consistently producing large, high purity crystals. Alpha-rhombohedral boron is difficult to make because it is only stable at temperatures below around 1100-1200 °C, its formation is very sensitive to impurities, and the conditions necessary for its formation are not fully understood or agreed upon in the literature. In this research, the method of pyrolysis of boron tribromide (hydrogen reduction of boron tribromide) was used to deposit boron on a tantalum filament. The goal was to refine this method, or potentially use it in combination with a second method (amorphous boron crystallization), to the point where it is possible to grow large, high purity alpha-rhombohedral boron crystals with consistency. A pyrolysis apparatus was designed and built, and a number of trials were run to determine the conditions (reaction temperature, etc.) necessary for alpha-rhombohedral boron production. This work was focused on the x-ray diffraction analysis of the boron deposits; x-ray diffraction was performed on a number of samples to determine the types of boron (and other compounds) formed in each trial and to guide the choices of test conditions for subsequent trials. It was found that at low reaction temperatures (in the range of around 830-950 °C), amorphous boron was the primary form of boron produced. Reaction temperatures in the range of around 950-1000 °C yielded various combinations of crystalline boron and amorphous boron. In the first trial performed at a temperature of 950 °C, a mix of amorphous boron and alpha-rhombohedral boron was formed. Using a scanning electron microscope, it was possible to see small alpha-rhombohedral boron crystals (on the order of ~1 micron in size) embedded in the surface of the deposit. In subsequent trials carried out at reaction temperatures in the range of 950 °C – 1000 °C, it was found that various combinations of alpha-rhombohedral boron, beta-rhombohedral boron, and amorphous boron were produced; the results tended to be unpredictable (alpha-rhombohedral boron was not produced in every trial), and the factors leading to success/failure were difficult to pinpoint. These results illustrate how sensitive of a process producing alpha-rhombohedral boron can be, and indicate that further improvements to the test apparatus and test conditions (for example, higher purity/cleanliness) may be necessary to optimize the boron deposition. Although alpha-rhombohedral boron crystals of large size were not achieved, this research was successful in (a) developing a pyrolysis apparatus and test procedure that can serve as a platform for future testing, (b) determining reaction temperatures at which alpha-rhombohedral boron can form, and (c) developing a consistent process for analyzing the boron deposits and determining their composition. Further experimentation is necessary to achieve a pyrolysis apparatus and test procedure that can yield large alpha-rhombohedral boron crystals with consistency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Evidence of rapid climatic oscillations like those observed in the Greenland ice cores and sediments from high latitudes of the northern Atlantic have been recognized in the pulses of terrigenous material to continental margin sediments off Cameroon. Fe/Ca ratios used as a parameter to quantify the relative proportions of terrigenous fluxes versus marine carbonate monitor the variability of the west African monsoon. They reveal the history of abrupt changes in precipitation over western and central Africa during the past 52 kyr. These rapid changes are particularly pronounced during the last glacial period and occur at timescales of a few thousand years. Stable oxygen isotope (delta18O) records of Globigerinoides ruber (pink) show high negative values reflecting periods of high monsoon precipitation. The Fe/Ca pattern is very similar to the Dansgaard-Oeschger cycles from the Greenland ice cores. The good correspondence between the warm interstadials of the Dansgaard-Oeschger cycles from the GISP2 ice core records and the high pulses of Fe/Ca sedimentation in our core suggest a strong teleconnection between the low-latitude African climate and the high-latitude northern hemisphere climate oscillations during the last glacial. This climatic link is probably vested in the west African monsoonal fluctuation that alters tropical sea surface temperatures, thermohaline circulations and in turn net export of heat from the south to the north Atlantic, coupled with the variability of the low-latitude southeast trade winds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dominant processes determining biological structure in lakes at millennial timescales are complex. In this study, we used a multi-proxy approach to determine the relative importance of in-lake versus indirect processes on the Holocene development of an oligotrophic lake in SW Greenland (66.99°N, 50.97°W). A 14C and 210Pb-dated sediment core covering approximately 8500 years BP was analyzed for organic-inorganic carbon content, pigments, diatoms, chironomids, cladocerans, and stable isotopes (d13C, d18O). Relationships among the different proxies and a number of independent controlling variables (Holocene temperature, an isotope-inferred cooling period, and immigration of Betula nana into the catchment) were explored using redundancy analysis (RDA) independent of time. The main ecological trajectories in the lake biota were captured by ordination first axis sample scores (18-32% variance explained). The importance of the arrival of Betula (ca. 6500 years BP) into the catchment was indicated by a series of partial-constrained ordinations, uniquely explaining 12-17% of the variance in chironomids and up to 9% in pigments. Climate influences on lake biota were strongest during a short-lived cooling period (identified by altered stable isotopes) early in the development of the lake when all proxies changed rapidly, although only chironomids had a unique component (8% in a partial-RDA) explained by the cooling event. Holocene climate explained less variance than either catchment changes or biotic relationships. The sediment record at this site indicates the importance of catchment factors for lake development, the complexity of community trends even in relatively simple systems (invertebrates are the top predators in the lake) and the challenges of deriving palaeoclimate inferences from sediment records in low-Arctic freshwater lakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the study, we establish centennial records of anthropogenic lead pollution at different locations in the North Atlantic (Iceland, USA, and Europe) by means of lead deposited in shells of the long-lived bivalve Arctica islandica. Due to local oceanographic and geological conditions we conclude that the lead concentrations in the Icelandic shell reflect natural influxes of lead into Icelandic waters. In comparison, the lead profile of the US shell is clearly driven by anthropogenic lead emissions transported from the continent to the ocean by westerly surface winds. Lead concentrations in the European North Sea shell, in contrast, are dominantly driven by local lead sources resulting in a much less conspicuous 1970s gasoline lead peak. In conclusion, the lead profiles of the three shells are driven by different influxes of lead, and yet, all support the applicability of Pb/Ca analyses of A. islandica shells to reconstruct location specific anthropogenic lead pollution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aragonitic clathrites are methane-derived precipitates that are found at sites of massive near-seafloor gas hydrate (clathrate) accumulations at the summit of southern Hydrate Ridge, Cascadia margin. These platy carbonate precipitates form inside or in proximity to gas hydrate, which in our study site currently coexists with a fluid that is highly enriched in dissolved ions as salts are excluded during gas hydrate formation. The clathrites record the preferential incorporation of 18O into the hydrate structure and hence the enrichment of 16O in the surrounding brine. We measured d18O values as high as 2.27 per mil relative to Peedee belemnite that correspond to a fluid composition of -1.18 per mil relative to standard mean ocean water. The same trend can be observed in Ca isotopes. Ongoing clathrite precipitation causes enrichment of the 44Ca in the fluid and hence in the carbonates. Carbon isotopes confirm a methane source for the carbonates. Our triple stable isotope approach that uses the three main components of carbonates (Ca, C, O) provides insight into multiple parameters influencing the isotopic composition of the pore water and hence the isotopic composition of the clathrites. This approach provides a tool to monitor the geochemical processes during clathrate and clathrite formation, thus recording the evolution of the geochemical environment of gas hydrate systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planktic foraminifera have been used as recorders of the neodymium (Nd) isotopic composition of seawater, although there is still controversy over the precise provenance of the Nd signal. We present an extensive, multispecific plankton tow Nd/Ca data set from several geographic locations (SE Atlantic, NE Atlantic, Norwegian Sea, and western Mediterranean), together with core top samples from the Mediterranean region. The range of Nd/Ca ratios in plankton-towed foraminifera, cleaned only of organic material, from all regions (0.01-0.7 µmol/mol), is similar to previously published analyses of sedimentary foraminifera cleaned using both oxidative and reductive steps, with distribution coefficients (Kd) ranging between 4 and 302. For the Mediterranean, where core top and plankton tow data are both available, the range for plankton tows (0.05-0.7 µmol/mol) is essentially identical to that for the core tops (0.1-0.5 µmol/mol). Readsorption of Nd during cleaning is ruled out by the fact that the plankton tow samples underwent only an oxidative cleaning process. We find a relationship between manganese (Mn) and Nd in plankton tow samples that is mirrored by a similar correlation in core top samples. This relationship suggests that Fe-Mn coatings are of negligible importance to the Nd budgets of foraminifera as the Nd/Mn ratio it implies is over an order of magnitude greater than that seen in other Fe-Mn oxide phases. Rather, since both plankton tows and core tops present a similar behavior, the Nd/Mn relationship must originate in the upper water column. The data are consistent with the acquisition of Nd and Mn from the water column by binding to organic material and the fact that intratest organic material is shielded from both aggressive cleaning and diagenetic processes. Collectively, the results help to explain two abiding puzzles about Nd in sedimentary planktic foraminifera: their high REE contents and the fact that they record a surface water Nd isotopic signal, regardless of the cleaning procedure used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid procedure for Io (Th230) dating of sediments with accumulation rates in the range of several cm/1000 years is described. Studying of large sample populations with very small Io-excess activity is possible as the counting time (around 1500 min/sample) are 2 to 5 times shorter than with the standard Io-excess method. Improved sensitivity of the Io-excess measurement is achieved by: 1) extraction ( ~90 %) of the authigenic Io-excess with EDTA, with minor leaching ( ~30 %) of the allogenic Th232 and Io-supported, 2) processing samples as large as 10 g or more. The procedure was applied to sediments from the Caribbean (V 12-122) and from the Ionian Sea (M22_48 and M17_17). In the case of the standard core V 12-122 our results are in good agreement with previous time-consuming Io determinations. The resulting average accumulation rates of 2.0 ± 0.3 cm/1000 years for the Ionian Sea cores are close to the average derived from magnetic reversal studies of a nearby core.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on detailed reconstructions of global distribution patterns, both paleoproductivity and the benthic d13C record of CO2, which is dissolved in the deep ocean, strongly differed between the Last Glacial Maximum and the Holocene. With the onset of Termination I about 15,000 years ago, the new (export) production of low- and mid-latitude upwelling cells started to decline by more than 2-4 Gt carbon/year. This reduction is regarded as a main factor leading to both the simultaneous rise in atmospheric CO2 as recorded in ice cores and, with a slight delay of more than 1000 years, to a large-scale gradual CO2 depletion of the deep ocean by about 650 Gt C. This estimate is based on an average increase in benthic d13C by 0.4-0.5 per mil. The decrease in new production also matches a clear 13C depletion of organic matter, possibly recording an end of extreme nutrient utilization in upwelling cells. As shown by Sarnthein et al., [1987], the productivity reversal appears to be triggered by a rapid reduction in the strength of meridional trades, which in turn was linked via a shrinking extent of sea ice to a massive increase in high-latitude insolation, i.e., to orbital forcing as primary cause.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article will review major features of the 'giant' Cape Blanc filament off Mauritania with regard to the transport of chlorophyll and organic carbon from the shelf to the open ocean. Within the filament, chlorophyll is transported about 400 km offshore. Modelled particle distributions along a zonal transect at 21°N showed that particles with a sinking velocity of 5 m d**-1 are advected offshore by up to 600 km in subsurface particle clouds generally located between 400 m and 800 m water depth, forming an Intermediate Nepheloid Layer (INL). It corresponds to the depth of the oxygen minimum zone. Heavier particles with a sinking velocity of 30 m d**-1 are transported from the shelf within the Bottom Layer (BL) of more than 1000 m thickness, largely following the topography of the bottom slope. The particles advected within the BL contribute to the enhanced winter-spring mass fluxes collected at the open-ocean mesotrophic sediment trap site CB-13 (200 nm offshore), due to a long distance advection in deeper waters. The lateral contribution to the deep sediment trap in winter-spring is estimated to be 63% and 72% for organic carbon and total mass, respectively, whereas the lateral input for both components on an annual basis is estimated to be in the order of 15%. Biogenic opal increases almost fivefold from the upper to the lower mesotrophic CB-13 trap, also pointing to an additional source for biogenic silica from eutrophic coastal waters. Blooms obviously sink in smaller, probably mesoscale-sized patches with variable settling rates, depending on the type of aggregated particles and their ballast content. Generally, particle sinking rates are exceptionally high off NW Africa. Very high chlorophyll values and a large size of the Cape Blanc filament in 1998-1999 are also documented in enhanced total mass and organic carbon fluxes. An increasing trend in satellite chlorophyll concentrations and the size of the Cape Blanc filament between 1997 and 2008 as observed for other coastal upwelling areas is not documented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In May 1964 the Institute of Marine Science (University of Miami), Scripps Institution of Oceanography (University of California), Woods Hole Oceanographic Institution, and Lamont Geological Observatory (Columbia University) joined in the establishment of the JOINT OCEANOGRAPHIC INSTITUTIONS DEEP EARTH SAMPLING (JOIDES) program. The long range purpose of this organization is to obtain continuous core samples of the entire sedimentary column from the floors of the oceans. It was decided that initial efforts would be limited to water depths of less than 1000 fathoms (6000 feet), and tentative locations were selected for drilling operations off the eastern, western and Gulf coasts of the United States. Near the end of December 1964 it was found that the M/V Caldrill I, a drilling vessel capable of working to depths of 6000 feet, was to engage in drilling operations on the Grand Banks of Newfoundland during the summer of 1965 for the Pan American Petroleum Corporation. Thus it was agreed to organize a drilling program along the track of Caldrill between California and the Grand Banks. Selection was made of an area on the continental shelf and the Blake Plateau off Jacksonville, Florida. Based upon many previous geological and geophysical investigations by the participating laboratories, a considerable body of knowledge had been gained about this region of the continental-oceanic border. For this initial program of JOIDES, the Lamont Geological Observatory was chosen as the operating institution with J. L. Worzel as principal investigator, and C. L. Drake and H. A. Gibbon as program planners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical well logs were used to measure the dry weight percent oxide abundances of Si, Al, Ca, Mg, Fe, Ti, and K and the elemental abundances of Gd, S, Th, and U at 0.15-m intervals throughout the basement section of Hole 504B. These geochemical data are used to estimate the integrated chemical exchange resulting from hydrothermal alteration of the oceanic crust that has occurred over the last 5.9 Ma. A large increase in Si in the transition zone between pillows and dikes (Layers 2B and 2C) indicates that mixing of hot, upwelling hydrothermal fluids with cold, downwelling seawater occurred in the past at a permeability discontinuity at this level in the crust, even though the low-to-high permeability boundary in Hole 504B is now 500 m shallower (at the Layer 2A/2B boundary). The observations of extensive Ca loss and Mg gain agree with chemical exchanges recorded in the laboratory in experiments on the reactions that occur between basalt and seawater at high temperatures. The K budget requires significant addition to Layer 2A from both high-temperature depletion in Layers 2B and 2C and low-temperature alteration by seawater. Integrated water/rock ratios are derived for the mass of seawater required to add enriched elements and for the mass of hydrothermal fluid required to remove depleted elements in the crust at Hole 504B.