921 resultados para Behavior Change
Resumo:
Over 1000 marine and terrestrial pollen diagrams and Some hundreds of vertebrate faunal sequences have been studied in the Austral-Asian region bisected by the PEPII transect, from the Russian arctic extending south through east Asia, Indochina, southern Asia, insular Southeast Asia (Sunda), Melanesia, Australasia (Sahul) and the western south Pacific. The majority of these records are Holocene but sufficient data exist to allow the reconstruction of the changing biomes over at least the past 200,000 years. The PEPII transect is free of the effects of large northern ice caps yet exhibits vegetational change in glacial cycles of a similar scale to North America. Major processes that can be discerned are the response of tropical forests in both lowlands and uplands to glacial cycles, the expansion of humid vegetation at the Pleistocene-Holocene transition and the change in faunal and vegetational controls as humans occupy the region. There is evidence for major changes in the intensity of monsoon and El Nino-Southern oscillation variability both on glacial-interglacial and longer time scales with much of the region experiencing a long-term trend towards more variable and/or drier climatic conditions. Temperature variation is most marked in high latitudes and high altitudes with precipitation providing the major climate control in lower latitude, lowland areas. At least some boundary shifts may be the response of vegetation to changing CO2 levels in the atmosphere. Numerous questions of detail remain, however, and current resolution is too coarse to examine the degree of synchroneity of millennial scale change along the transect. (C) 2003 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
Objective: To analyze from a health sector perspective the cost-effectiveness of dexamphetamine (DEX) and methylphenidate (MPH) interventions to treat childhood attention deficit hyperactivity disorder (ADHD), compared to current practice. Method: Children eligible for the interventions are those aged between 4 and 17 years in 2000, who had ADHD and were seeking care for emotional or behavioural problems, but were not receiving stimulant medication. To determine health benefit, a meta-analysis of randomized controlled trials was performed for DEX and MPH, and the effect sizes were translated into utility values. An assessment on second stage filter criteria ('equity', 'strength of evidence', 'feasibility' and 'acceptability to stakeholders') is also undertaken to incorporate additional factors that impact on resource allocation decisions. Simulation modelling techniques are used to present a 95% uncertainty interval (UI) around the incremental cost-effectiveness ratio (ICER), which is calculated in cost (in A$) per DALY averted. Results: The ICER for DEX is A$4100/DALY saved (95% UI: negative to A$14 000) and for MPH is A$15 000/DALY saved (95% UI: A$9100-22 000). DEX is more costly than MPH for the government, but much less costly for the patient. Conclusions: MPH and DEX are cost-effective interventions for childhood ADHD. DEX is more cost-effective than MPH, although if MPH were listed at a lower price on the Pharmaceutical Benefits Scheme it would become more cost-effective. Increased uptake of stimulants for ADHD would require policy change. However, the medication of children and wider availability of stimulants may concern parents and the community.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.
Resumo:
Photodynamic therapy (PDT) for cancer is a therapeutic modality in the treatment of tumors in which visible light is used to activate a photosensitizer. Cell membranes have been identified as an important intracellular target for singlet oxygen produced during the photochemical pathway. This study analyzed the cytotoxicity in specific cellular targets of a photosensitizer used in PDT in vitro. The photosensitizing effects of chloroaluminum phthalocyanine liposomal were studied on the mitochondria, cytoskeleton and endoplasmic reticulum of HeLa cells. Cells were irradiated with a diode laser working at 670 nm, energy density of 4.5 J/cm(2) and power density of 45 mW/cm(2). Fluorescence microscopic analysis of the mitochondria showed changes in membrane potential. After PDT treatment, the cytoskeleton and endoplasmic reticulum presented basic alterations in distribution. The combined effect of AlPHCl liposomal and red light in the HeLa cell line induced photodamage to the mitochondria, endoplasmic reticulum and actin filaments in the cytoskeleton. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Bovine testicular hyalurphidase (BT-HAase), a tetrameric enzyme responsible for randomly hyaluronic acid, catalytic hydrolysis, was successfully immobilized on Langmuir- Blodgett films prepared with the sodium salt of dihexadacylphosphoric acid, (DHP-Zn(II)) ending with dipalmitoylphosphatidylcholine, DPPC. Data of protein, adsorption at the air-liquid interface by means of pendant drop shipe analysis and interaction of the protein with Langmuir monolayers of DPPC, using a Langmuir trough, have provided information. about the conditions to be used in the protein immobilization. The dynamic surface pressure curves obtained from pendant drop experiments for the enzyme in buffer solutions indicate that, within the range of concentration investigated in this study, the enzyme exhibits the largest induction time at 5 mu g L(-1) attributed to diffusion processes. Nevertheless, it seems that, at this concentration, the most probable conformation should be the one which occupies the smallest area at pi -> 0. The surface pressure (pi) area curves obtained for BT-HAase and mixed DPPC- BT-HAase monolayers reveal the presence of the enzyme at the air-lipid interface up to 45 mN m(-1). Tests of enzymatic activity, using hyaluronic acid, HA, as the substrate, showed an increase of activity compared to the homogeneous medium. A simplified model of protein insertion into the lipid matrix is used to explain the obtained results.
Resumo:
Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.
Resumo:
Carbon-supported catalysts containing platinum and molybdenum oxide are prepared by thermal decomposition of polymeric precursors. The Pt(y)Mo(z)O(x)/C materials are characterized by energy dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The catalysts present a well-controlled stoichiometry and nanometric particles. Molybdenum is present mainly as the MoO(3) orthorhombic structure, and no Pt alloys are detected. The voltammetric behavior of the electrodes is investigated; a correlation with literature results for PtMo/C catalysts prepared by other methods is established. The formation of soluble species and the aging effect are discussed. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In situ and ex situ studies concerning the new hybrid material vanadium pentoxide xerogel in the presence of the cationic surfactant cetyl pyridinium chloride (V(2)O(5)/CPC) are presented. The in situ characterization studies revealed the presence of a lamellar structure for the V(2)O(5)/CPC hybrid material. The intercalation reaction was evidenced on the basis of the increase in the d-spacing as well as the displacement of the infrared bands toward lower energy levels. Electrochemical studies comprising the cyclic voltammetry and the electrochemical impedance spectroscopy techniques showed that the behavior of the hybrid material is considerably influenced by the electrolyte composition. The ion insertion/de-insertion into the V(2)O(5) xerogel structure accompanying the charge transfer process is influenced by the solid-state diffusion process modeled by using the finite-space Warburg element.
Resumo:
The effect of intraseptal injections of lidocaine before a first or a second session in the elevated plus-maze, in a test-retest paradigm, was investigated. In addition to gross session analyses, a minute-by-minute analysis of the sessions was used to evaluate both anxiety and memory. Lidocaine injections before the test session produced increases in the frequency of entries, time spent and distance run in the open arms without affecting activity occurring in the closed arms. During the retest session, saline- and lidocaine-treated rats exhibited increased indices of anxiety and lidocaine-treated rats exhibited decreased closed-arm entries. The minute-by-minute analysis showed a faster decrease in anxiety-related behaviors during the test session by saline- than by lidocaine-treated rats and a significant decrease in closed-arm exploration by saline-treated rats, but not by lidocaine-treated ones. Lidocaine injection before the retest session produced increases in the frequency of entries, time spent and distance run in the open arms in the second session when compared with saline-treated rats. Minute-by-minute analysis showed an increase in the time spent in the open arms by lidocaine animals at the beginning of the retest session in comparison to saline animals and a significant decrease in closed-arm exploration by both groups. These results suggest that inactivation of the medial septum by lidocaine affects the expression of unconditioned and conditioned forms of anxiety in the elevated plus-maze and, in a lesser way, the acquisition and retention of spatial information. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Mice show urinary scent marking behavior as a form of social communication. Marking to a conspecific stimulus mouse or odor varies with stimulus familiarity, indicating discrimination of novel and familiar animals. This study investigated Fos immunoreactivity in inbred C57BL/6J (C57) males following scent marking behavior in response to detection of a social stimulus, or discrimination between a familiar and an unfamiliar conspecific. In Experiment 1 C57 mice were exposed for four daily trials to an empty chamber; on a test day they were exposed to the same chamber or to a male CD-1 mouse in that chamber. Increased scent marking to the CD-1 mouse was associated with increased Fos-immunoreactive cells in the basolateral amygdala, medial amygdala, and dorsal and ventral premammillary nuclei. In Experiment 2 C57 mice were habituated to a CD-1 male for 4 consecutive days and, on the 5th day, exposed to the same CD-1 male, or to a novel CD-1 male. Mice exposed to a novel CD-1 displayed a significant increase in scent marking compared to their last exposure to the familiar stimulus, indicating discrimination of the novelty of this social stimulus. Marking to the novel stimulus was associated with enhanced activation of several telencephalic, as well as hypothalamic and midbrain, structures in which activation had not been seen in the detection paradigm (Experiment 1). These included medial prefrontal and piriform cortices, and lateral septum; the paraventricular nuclei, ventromedial nuclei, and lateral area of the hypothalamus, and the ventrolateral column of the periaqueductal gray. These data suggest that a circumscribed group of structures largely concerned with olfaction is involved in detection of a conspecific olfactory stimulus, whereas discrimination of a novel vs. a familiar conspecific stimulus engages a wider range of forebrain structures encompassing higher-order processes and potentially providing an interface between cognitions and emotions. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The amygdala, the dorsal periaqueductal gray (dPAG), and the media] hypothalamus have long been recognized to be a neural system responsible for the generation and elaboration of unconditioned fear in the brain. It is also well known that this neural substrate is under a tonic inhibitory control exerted by GABA mechanisms. However, whereas there is a growing body of evidence to suggest that the amygdala and dPAG are also able to integrate conditioned fear, it is still unclear, however, how the distinct hypothalamic nuclei participate in fear conditioning. In this work we aimed to examine the extent to which the gabaergic mechanisms of this brain region are involved in conditioned fear using the fear-potentiated startle (FPS). Muscimol, a GABA-A receptor agonist, and semicarbazide, an inhibitor of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD), were used as an enhancer and inhibitor of the GABA mechanisms, respectively. Muscimol and semicarbazide were injected into the anterior hypothalamus (AHN). the dorsomedial part of the ventromedial nucleus (VMHDM), the dorsomedial (DMH) or the dorsal premammillary (PMD) nuclei of male Wistar rats before test sessions of the fear conditioning paradigm. The injections into the DMH and PMD did not produce any significant effects on FPS. On the other hand, muscimol injections into the AHN and VMHDM caused significant reduction in FPS. These results indicate that injections of muscimol and semicarbazide into the DMH and PMD fail to change the FPS, whereas the enhancement of the GABA transmission in the AHN and VMHDM produces a reduction of the conditioned fear responses. On the other hand, the inhibition of this transmission led to an increase of this conditioned response in the AHN. Thus, whereas DMH and PMD are known to be part of the caudal-most region of the medial hypothalamic defensive system, which integrates unconditioned fear, systems mediating conditioned fear select the AHN and VMHDM nuclei that belong to the rostral-most portion of the hypothalamic defense area. Thus, distinct subsets of neurons in the hypothalamus could mediate different aspects of the defensive responses. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The anxiolytic effects of benzodiazepines are reduced after a single exposure of rats to elevated plus-maze test (EPM). Midazolam showed an anxioselective profile in animals submitted to one session (T1) but did not change the usual exploratory behavior of rats exposed twice (T2) to the EPM. In this study we examined further the one-trial tolerance by performing a factor analysis of the exploratory behavior of rats injected with saline before both trials as well as an immunohistochemistry study for quantification of Fos expression in encephalic structures after these sessions. Factor analysis of all behavioral categories revealed that factor I consisted of anxiety-related categories in T1 whereas these same behavioral categories loaded on factor 2 in T2. Risk assessment was also dissociated as it loaded stronger on T2 (factor 3) than on T1 (factor 4). Locomotor activity in T1 loaded on factor 5. Immunohistochemistry analyses showed that Fos expression predominated in limbic structures in T1 group. The medial prefrontal cortex and amygdala were the main areas activated in T2 group. These data suggest that anxiety and risk assessment behaviors change their valence across the EPM sessions. T2 is characterized by the emergence of a fear factor, more powerful risk assessment and medial prefrontal cortex activation. The amygdala functions as a switch between the anxiety-like patterns of T1 to the cognitive control of fear prevalent in T2. The EPM retest session is proposed as a tool for assessing the cognitive activity of rodents in the control of fear. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Studies on the involvement of 5-HT1-mediated mechanisms in the dorsal periaqueductal gray (dPAG) of animals with past stressful experiences have not been conducted so far. We investigated the role of 5-HT1 receptors in the dPAG of rats previously submitted to contextual fear conditioning. Defensive behaviors induced by activation of the dPAG were assessed by measuring the lowest electric current applied to this structure (threshold) able to produce freezing and escape responses during testing sessions of contextual fear conditioning, in which animals were placed in a context previously paired to footshocks. The 5-HT1A function of the dPAG was evaluated by local injections of 8-OH-DPAT (4 and 8 nmol/0.2 mu L) and WAY-100635 (10 nmol/0.2 mu L), selective agonist and antagonist of 5-HT1A receptors, respectively. In accordance with previous studies, 8-OH-DPAT increased aversive thresholds (antiaversive effects) but injections of WAY 100635 into the dPAG did not produce significant effects on the aversive thresholds in naive rats. However, the aversive thresholds of animals exhibiting contextual fear remained unchanged with both treatments. Moreover, 8-OH-DPAT and WAY 100635 did not change the dPAG post-stimulation freezing. The present results suggest that the stressful experience of being fear conditioned has an effect on the role of the 5-HT1A receptors in mediating unconditioned fear. Also, the reduction in the regulation of the defensive behaviors by 5-HT1A-mediated mechanisms in the dPAG of these animals may underlie the stress precipitated psychopathology associated with the neural substrates of aversion of the dPAG. (c) 2007 Elsevier Inc. All rights reserved.