997 resultados para Basic blue 41
Resumo:
The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.
Resumo:
The efficiencies of InxGa1-xN two-junction solar cells are calculated with various bandgap combinations of subcells under AM1.5 global, AM1.5 direct and AM0 spectra. The influence of top-cell thickness on efficiency has been studied and the performance of InxGa1-xN cells for the maximum light concentration of various spectra has been evaluated. Under one-sun irradiance, the optimum efficiency is 35.1% for the AM1.5 global spectrum, with a bandgap combination of top/bottom cells as 1.74 eV/1.15 eV. And the limiting efficiency is 40.9% for the highest light concentration of the AM1.5 global spectrum, with the top/bottom cell bandgap as 1.72 eV/1.12 eV.
Resumo:
Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with direrent growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the lowgrowth rate sample shows a greater blue shift of PL peak wave length. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blue shift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.
Resumo:
We have systematically investigated the magnetic properties of Si-doped (Ga,Mn)As films. When the Si content is low, both Curie temperature (T-C) and carrier density (p) decrease compared with undoped (Ga,Mn)As, whereas a monotonic increase of T-C and p is observed with further increase in the doping content of Si. We discuss the possible mechanism for the changes obtained by different Si doping contents and attribute the results to a competition between the existence of Si-Ga (Si substitutes for Ga site) that acts as a donor and Si-I (Si interstitials) which is in favor of the improvement of ferromagnetism. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
ZnMgO hexagonal-nanotowers/films grown on m-plane sapphire substrates were successfully synthesized using a vertical low-pressure metal organic chemical vapour deposition system. The structural and optical properties of the as-obtained products were characterized using various techniques. They were grown along the non-polar [1 0 (1) over bar 0] direction and possessed wurtzite structure. The ZnMgO hexagonal-nanotowers were about 200 nm in diameter at the bottom and 120 nm in length. Photoluminescence and Raman spectra show that the products have good crystal quality with few oxygen vacancies. With Mg incorporation, multiple-phonon scattering becomes weak and broad, and the intensities of all observed vibrational modes decrease. The ultraviolet near band edge emission shows a clear blueshift (as much as 100 meV) and broadening compared with that of pure ZnO products.
Resumo:
A heterojunction structure photodetector was fabricated by evaporating a semitransparent Ni/Au metal film oil the InGaN/GaN structure. The photocurrent (PC) spectra show that both the Schottky junction (NiAu/InGaN) and the InGaN/GaN isotype heterojunction contribute to the PC signal which suggests that two junctions are connected in series and result in a broader spectral response of the device. Secondary electron, cathodoluminescence and electron-beam-induced current images measured from the same area of the edge surface clearly reveal the profile of the layer structure and distribution of the built-in electric field around the two junctions. A band diagram of the device is drawn based oil the consideration of the polarization effect at the InGaN/GaN interface. The analysis is consistent with the physical mechanism of a tandem structure of two junctions connected in series.
Resumo:
InGaN/GaN-multiple-quantum-well-based light emitting diode ( LED) nanopillar arrays with a diameter of approximately 200nm and a height of 700nm are fabricated by inductively coupled plasma etching using Ni self-assembled nanodots as etching mask. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence ( PL) intensity is achieved after the fabrication of nanopillars, and a blue shift and a decrease of full width at half maximum of the PL peak are observed. The method of additional wet etching with different chemical solutions is used to remove the etch-induced damage. The result shows that the dilute HCl ( HCl:H2O=1:1) treatment is the most effective. The PL intensity of nanopillar LEDs after such a treatment is about 3.5 times stronger than that before treatment.
Resumo:
We obtained a low density of coupled InAs/GaAs quantum dots (QDs) with an emission wavelength of around 1.3 mu m at room temperature. Atomic force microscopy and transmission electronic microscopy reveal that the dot size difference and the lateral displacement between the two dots are related to the spacer thickness. Spectroscopy of the coupled QD ensembles is considerably influenced by the spacer thickness.
Resumo:
Blue-green GaN-based vertical cavity surface emitting lasers (VCSELs) were fabricated with two dielectric Ta2O5/SiO2 distributed Bragg reflectors. Lasing action was observed at a wavelength of 498.8 nm at room temperature under optical pumping. Threshold energy density and emission linewidth were 189 mJ/cm(2) and 0.15 nm, respectively. The result demonstrates that blue-green VCSELs can be realised using III-nitride semiconductors.
Resumo:
Polarization-resolved edge-emitting electroluminescence (EL) studies of InGaN/GaN MQWs of wavelengths from near-UV (390 nm) to blue (468 nm) light-emitting diodes (LEDs) are performed. Although the TE mode is dominant in all the samples of InGaN/GaN MQW LEDs, an obvious difference of light polarization properties is found in the InGaN/GaN MQW LEDs with different wavelengths. The polarization degree decreases from 52.4% to 26.9% when light wavelength increases. Analyses of band structures of InGaN/GaN quantum wells and luminescence properties of quantum dots imply that quantum-dot-like behavior is the dominant reason for the low luminescence polarization degree of blue LEDs, and the high luminescence polarization degree of UV LEDs mainly comes from QW confinement and the strain effect. Therefore, indium induced carrier confinement (quantum-dot-like behavior) might play a major role in the polarization degree change of InGaN/GaN MQW LEDs from near violet to blue.
Resumo:
By replacing the flat (Ga1-xAlx)As barrier layer with a trapezoidal AlxGa1-xAs barrier layer, a conventional heterostructure can be operated in enhancement mode. The sheet density of two-dimensional electron gas (2DEG) in the structure can be tuned linearly from N-2D = 0.3 x 10(11) cm(-2) to N-2D = 4.3 x 10(11) cm(-2) by changing the bias on the top gate. The present scheme for gated heterostructures is easy to fabricate and does not require the use of self-alignment photolithography or the deposition of insulating layers. In addition, this scheme facilitates the initial electrical contact to 2DEG. Although, the highest electron mobility obtained for the moment is limited by the background doping level of heterostructures, the mobility should be improved substantially in the future. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
For the solid-state double-dot interferometer, the phase shifted interference pattern induced by the interplay of inter-dot Coulomb correlation and multiple reflections is analyzed by harmonic decomposition. Unexpected result is uncovered, and is discussed in connection with the which-path detection and electron loss. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Optically pumped GaN-based vertical cavity surface-emitting laser (VCSEL) with two Ta2O5/SiO2 dielectric distributed Bragg reflectors (DBRs) was fabricated via a simplifled procedure direct deposition of the top DBR onto the GaN surface exposed after substrate removal and no use of etching and polishing processes. Blue-violet lasing action was observed at a wavelength of 397.3 ran under optical pumping at room temperature with a threshold pumping energy density of about 71.5 mJ/cm(2). The laser action was further confirmed by a narrow emission linewidth of 0.13 nm and a degree of polarization of about 65%. The result suggests that practical blue-violet GaN-bsaed VCSEL can be realized by optimizing the laser lift-off technique for substrate removal.
Resumo:
Confinement factor and absorption loss of AlInGaN based multiquantum well laser diodes (LDs) were investigated by numerical simulation based on a two-dimensional waveguide model. The simulation results indicate that an increased ridge height of the waveguide structure can enhance the lateral optical confinement and reduce the threshold current. For 405 nm violet LDs, the effects of p-AlGaN cladding layer composition and thickness on confinement factor and absorption loss were analyzed. The experimental results are in good agreement with the simulation analysis. Compared to violet LD, the confinement factors of 450 nm blue LD and 530 nm green LD were much lower. Using InGaN as waveguide layers that has higher refractive index than GaN will effectively enhance the optical confinement for blue and green LDs. The LDs based on nonpolar substrate allow for thick well layers and will increase the confinement factor several times. Furthermore, the confinement factor is less sensitive to alloys composition of waveguide and cladding layers, being an advantage especially important for ultraviolet and green LDs.
The investigation on strain relaxation and double peaks in photoluminescence of InGaN/GaN MQW layers
Resumo:
Two emission peaks were observed in the low temperature photoluminescence (LTPL) spectra of an InGaN/GaN multiple quantum well (MQW) structure before and after nanopillar fabrication. After nanopillar fabrication it is found that among the two peaks the longer wavelength peak exhibits a clear blue shift and has a much stronger enhancement in LTPL intensity than the shorter one. Combined with x-ray diffraction and spatially resolved cathodoluminescence analyses, the difference induced by nanopillar fabrication is ascribed to different strain relaxation states in the lower and upper quantum well layers. It is found that the lower QW layers of the as-grown MQW which causes the longer wavelength PL peak are more strained, while the upper ones are almost fully strain-relaxed. Therefore, the nanopillar fabrication induces much less strain relaxation in the upper part of the MQW than in the lower one.