966 resultados para Base excision repair. Polymorphism. Meningitis. Inflammatory response


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protection against Mycobacterium tuberculosis requires development and maintenance of granulomatous lesions, a feature considered to be the pathological hallmark of Tuberculosis (TB) disease. Upon encountering Mtb or mycobacterial antigens, specifically trehalose 6,6'-dimycolate (TDM), a strong local pro-inflammatory response is initiated. Systemic production of anti-inflammatory glucocorticoids (GCs) is also induced. Emergence of these antagonists at the inflammatory foci is counterproductive to development of the granulomatous structure and detrimental to host protection against TB. Therefore, it was hypothesized that local enzymatic regulation of GCs occurs locally at the site of granulomatous inflammation. The experiments described here strongly suggest that 11β-hydroxysteroid dehydrogenases (11βHSDs) shuttle GCs between active and inert forms during the acute granulomatous response, supporting the net reduction of corticosterone. The patterns of GC and 11βHSD regulation were specific to the lung (the site of inflammation) and were not observed in other tissues. Furthermore, 11βHSD2, which decreases corticosterone concentrations, was not expressed in models of dysregulated granulomatous inflammation. These findings suggest that cellular exposure to local active GC concentrations is restricted via 11βHSDs as a mechanism to initiate and maintain granuloma formation. The information derived from the experiments outlined in this dissertation provides a better understanding of the events required for establishment and maintenance of the protective granulomatous response. As a practical consequence, exploiting 11βHSD2 modulation of GCs at the site of Mtb infection may lead to improvement of Tuberculosis treatment strategies.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have demonstrated a variable response to ozone among individuals and animal species and strains. For instance, C57BL/6J mice have a greater inflammatory response to ozone exposure than C3H/HeJ mice. In these studies, I utilized these strain differences in an effort to derive a mechanistic explanation to the variable strain sensitivity to ozone exposure. Therefore, alveolar macrophages (AM) from C57BL/6J and C3H/HeJ mice were exposed in vitro to hydrogen peroxide ($\rm H\sb2O\sb2$), heat and acetyl ceramide or in vivo to ozone. Necrosis and DNA fragmentation in macrophages from the two murine strains were determined to assess cytotoxicity following these treatments. In addition, synthesis and expression of the stress proteins, stress protein 72 (SP72) and heme oxygenase (HO-1), were examined following treatments. The in vitro experiments were conducted to eliminate the possibility of in vivo confounders (i.e., differences in breathing rates in the two strains) and thus directly implicate some inherent difference between cells from the two murine strains. $\rm H\sb2O\sb2$ and heat caused greater cytotoxicity in AM from C57BL/6J than C3H/HeJ mice and DNA fragmentation was a particularly sensitive indicator of cell injury. Similarly, AM from C57BL/6J mice were more sensitive to ozone exposure than cells from C3H/HeJ mice. Exposure to either 1 or 0.4 ppm ozone caused greater cytotoxicity in macrophages from C57BL/6J mice compared to macrophages from C3H/HeJ mice. The increased sensitivity of AM to injury was associated with decreased synthesis and expression of stress proteins. AM from C57BL/6J mice synthesized and expressed significantly less stress proteins in response to heat and ozone than AM from C3H/HeJ mice. Heat treatment resulted in greater synthesis and expression of SP72. In addition, macrophages from C57BL/6J mice expressed lower amounts of HO-1 than macrophages from C3H/HeJ mice following 0.4 ppm ozone exposure. Therefore, AM from C57BL/6J mice are more susceptible to oxidative injury than AM from C3H/HeJ mice which might be due to differential expression of stress proteins in these cells. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis is a significant cause for multiple organ failure and death in the burn patient, yet identification in this population is confounded by chronic hypermetabolism and impaired immune function. The purpose of this study was twofold: 1) determine the ability of the systemic inflammatory response syndrome (SIRS) and American Burn Association (ABA) criteria to predict sepsis in the burn patient; and 2) develop a model representing the best combination of clinical predictors associated with sepsis in the same population. A retrospective, case-controlled, within-patient comparison of burn patients admitted to a single intensive care unit (ICU) was conducted for the period January 2005 to September 2010. Blood culture results were paired with clinical condition: "positive-sick"; "negative-sick", and "screening-not sick". Data were collected for the 72 hours prior to each blood culture. The most significant predictors were evaluated using logistic regression, Generalized Estimating Equations (GEE) and ROC area under the curve (AUC) analyses to assess model predictive ability. Bootstrapping methods were employed to evaluate potential model over-fitting. Fifty-nine subjects were included, representing 177 culture periods. SIRS criteria were not found to be associated with culture type, with an average of 98% of subjects meeting criteria in the 3 days prior. ABA sepsis criteria were significantly different among culture type only on the day prior (p = 0.004). The variables identified for the model included: heart rate>130 beats/min, mean blood pressure<60 mmHg, base deficit<-6 mEq/L, temperature>36°C, use of vasoactive medications, and glucose>150 mg/d1. The model was significant in predicting "positive culture-sick" and sepsis state, with AUC of 0.775 (p < 0.001) and 0.714 (p < .001), respectively; comparatively, the ABA criteria AUC was 0.619 (p = 0.028) and 0.597 (p = .035), respectively. SIRS criteria are not appropriate for identifying sepsis in the burn population. The ABA criteria perform better, but only for the day prior to positive blood culture results. The time period useful to diagnose sepsis using clinical criteria may be limited to 24 hours. A combination of predictors is superior to individual variable trends, yet algorithms or computer support will be necessary for the clinician to find such models useful. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fanconi anemia (FA) is a rare recessive genetic disease with an array of clinical manifestations including multiple congenital abnormalities, progressive bone marrow failure and profound cancer susceptibility. A hallmark of cells derived from FA patients is hypersensitivity to DNA interstrand crosslinking agents such as mitomycin C (MMC) and cisplatin, suggesting that FA- and FA-associated proteins play important roles in protecting cells from DNA interstrand crosslink (ICL) damage. Two genes involved in the FA pathway, FANCM and FAAP24, are of particular interest because they contain DNA interacting domains. However, there are no definitive patient mutations for these two genes, and the resulting lack of human genetic model system renders their functional studies difficult. In this study, I established isogenic human FANCM- and FAAP24-null mutants through homologous replacement-mediated gene targeting in HCT-116 cells, and systematically investigated the functions of FANCM and FAAP24 inchromosome stability, FA pathway activation, DNA damage checkpoint signaling, and ICL repair. I found that the FANCM-/-/FAAP24-/- double mutant was much more sensitive to DNA crosslinking agents than FANCM-/- and FAAP24-/- single mutants, suggesting that FANCM and FAAP24 possess epistatic as well as unique functions in response to ICL damage. I demonstrated that FANCM and FAAP24 coordinately support the activation of FA pathway by promoting chromatin localization of FA core complex and FANCD2 monoubiqutination. They also cooperatively function to suppress sister chromatid exchange and radial chromosome formation, likely by limiting crossovers in recombination repair. In addition, I defined novel non-overlapping functions of FANCM and FAAP24 in response to ICL damage. FAAP24 plays a major role in activating ICL-induced ATR-dependent checkpoint, which is independent of its interaction with FANCM. On the other hand, FANCM promotes recombination-independent ICL repair independently of FAAP24. Mechanistically, FANCM facilitates recruitment of nucleotide excision repair machinery and lesion bypass factors to ICL damage sites through its translocase activity. Collectively, my studies provide mechanistic insights into how genome integrity is both coordinately and independently protected by FANCM and FAAP24.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The xeroderma pigmentosum group D (XPD) protein has a dual function, both in nucleotide excision repair of DNA damage and in basal transcription. Mutations in the XPD gene can result in three distinct clinical phenotypes, XP, trichothiodystrophy (TTD), and XP with Cockayne syndrome. To determine if the clinical phenotypes of XP and TTD can be attributed to the sites of the mutations, we have identified the mutations in a large group of TTD and XP-D patients. Most sites of mutations differed between XP and TTD, but there are three sites at which the same mutation is found in XP and TTD patients. Since the corresponding patients were all compound heterozygotes with different mutations in the two alleles, the alleles were tested separately in a yeast complementation assay. The mutations which are found in both XP and TTD patients behaved as null alleles, suggesting that the disease phenotype was determined by the other allele. If we eliminate the null mutations, the remaining mutagenic pattern is consistent with the site of the mutation determining the phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. These proteins have no effect when DSB ends are homologous to the donor, either in the kinetics of recombination or in the proportion of gene conversions associated with crossing-over. A second DSB repair pathway, single-strand annealing also requires Rad1/Rad10 and Msh2/Msh3, but reveals a difference in their roles. When the flanking homologous regions that anneal are 205 bp, the requirement for Msh2/Msh3 is as great as for Rad1/Rad10; but when the annealing partners are 1,170 bp, Msh2/Msh3 have little effect, while Rad1/Rad10 are still required. Mismatch repair proteins Msh6, Pms1, and Mlh1 are not required. We suggest Msh2 and Msh3 recognize not only heteroduplex loops and mismatched bp, but also branched DNA structures with a free 3′ tail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replication protein A (RPA) is required for both DNA replication and nucleotide excision repair. Previous studies have shown that RPA interacts with the tumor suppressor p53. Herein, we have mapped a 20-amino acid region in the N-terminal part of p53 that is essential for its binding to RPA. This region is distinct from the minimal activation domain of p53 previously identified. We also demonstrate that UV radiation of cells greatly reduces the ability of RPA to bind to p53. Interestingly, damage-induced hyperphosphorylated RPA does not associate with p53. Furthermore, down-regulation of the RPA/p53 interaction is dependent upon the capability of cells to perform global genome repair. On the basis of these data, we propose that RPA may participate in the coordination of DNA repair with the p53-dependent checkpoint control by sensing UV damage and releasing p53 to activate its downstream targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical findings suggest that inflammatory disease symptoms are aggravated by ongoing, repeated stress, but not by acute stress. We hypothesized that, compared with single acute stressors, chronic repeated stress may engage different physiological mechanisms that exert qualitatively different effects on the inflammatory response. Because inhibition of plasma extravasation, a critical component of the inflammatory response, has been associated with increased disease severity in experimental arthritis, we tested for a potential repeated stress-induced inhibition of plasma extravasation. Repeated, but not single, exposures to restraint stress produced a profound inhibition of bradykinin-induced synovial plasma extravasation in the rat. Experiments examining the mechanism of inhibition showed that the effect of repeated stress was blocked by adrenalectomy, but not by adrenal medullae denervation, suggesting that the adrenal cortex mediates this effect. Consistent with known effects of stress and with mediation by the adrenal cortex, restraint stress evoked repeated transient elevations of plasma corticosterone levels. This elevated corticosterone was necessary and sufficient to produce inhibition of plasma extravasation because the stress-induced inhibition was blocked by preventing corticosterone synthesis and, conversely, induction of repeated transient elevations in plasma corticosterone levels mimicked the effects of repeated stress. These data suggest that repetition of a mild stressor can induce changes in the physiological state of the animal that enable a previously innocuous stressor to inhibit the inflammatory response. These findings provide a potential explanation for the clinical association between repeated stress and aggravation of inflammatory disease symptoms and provide a model for study of the biological mechanisms underlying the stress-induced aggravation of chronic inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cockayne syndrome (CS) is a human genetic disorder characterized by UV sensitivity, developmental abnormalities, and premature aging. Two of the genes involved, CSA and CSB, are required for transcription-coupled repair (TCR), a subpathway of nucleotide excision repair that removes certain lesions rapidly and efficiently from the transcribed strand of active genes. CS proteins have also been implicated in the recovery of transcription after certain types of DNA damage such as those lesions induced by UV light. In this study, site-directed mutations have been introduced to the human CSB gene to investigate the functional significance of the conserved ATPase domain and of a highly acidic region of the protein. The CSB mutant alleles were tested for genetic complementation of UV-sensitive phenotypes in the human CS-B homologue of hamster UV61. In addition, the CSB mutant alleles were tested for their ability to complement the sensitivity of UV61 cells to the carcinogen 4-nitroquinoline-1-oxide (4-NQO), which introduces bulky DNA adducts repaired by global genome repair. Point mutation of a highly conserved glutamic acid residue in ATPase motif II abolished the ability of CSB protein to complement the UV-sensitive phenotypes of survival, RNA synthesis recovery, and gene-specific repair. These data indicate that the integrity of the ATPase domain is critical for CSB function in vivo. Likewise, the CSB ATPase point mutant failed to confer cellular resistance to 4-NQO, suggesting that ATP hydrolysis is required for CSB function in a TCR-independent pathway. On the contrary, a large deletion of the acidic region of CSB protein did not impair the genetic function in the processing of either UV- or 4-NQO-induced DNA damage. Thus the acidic region of CSB is likely to be dispensable for DNA repair, whereas the ATPase domain is essential for CSB function in both TCR-dependent and -independent pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-four base pairs of the human antioxidant response element (hARE) are required for high basal transcription of the NAD(P)H:quinone oxidoreductase1 (NQO1) gene and its induction in response to xenobiotics and antioxidants. hARE is a unique cis-element that contains one perfect and one imperfect AP1 element arranged as inverse repeats separated by 3 bp, followed by a “GC” box. We report here that Jun, Fos, Fra, and Nrf nuclear transcription factors bind to the hARE. Overexpression of cDNA derived combinations of the nuclear proteins Jun and Fos or Jun and Fra1 repressed hARE-mediated chloramphenicol acetyltransferase (CAT) gene expression in transfected human hepatoblastoma (Hep-G2) cells. Further experiments suggested that this repression was due to overexpression of c-Fos and Fra1, but not due to Jun proteins. The Jun (c-Jun, Jun-B, and Jun-D) proteins in all the possible combinations were more or less ineffective in repression or upregulation of hARE-mediated gene expression. Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by β-naphthoflavone and tert-butyl hydroquinone. These results indicated that hARE-mediated expression of the NQO1 gene and its induction by xenobiotics and antioxidants are mediated by Nrf1 and Nrf2. The hARE-mediated basal expression, however, is repressed by overexpression of c-Fos and Fra1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammation plays a critical role in atherogenesis, yet the mediators linking inflammation to specific atherogenic processes remain to be elucidated. One such mediator may be secretory sphingomyelinase (S-SMase), a product of the acid sphingomyelinase gene. The secretion of S-SMase by cultured endothelial cells is induced by inflammatory cytokines, and in vivo data have implicated S-SMase in subendothelial lipoprotein aggregation, macrophage foam cell formation, and possibly other atherogenic processes. Thus, the goal of this study was to seek evidence for S-SMase regulation in vivo during a physiologically relevant inflammatory response. First, wild-type mice were injected with saline or lipopolysaccharide (LPS) as a model of acute systemic inflammation. Serum S-SMase activity 3 h postinjection was increased 2- to 2.5-fold by LPS (P < 0.01). To determine the role of IL-1 in the LPS response, we used IL-1 converting enzyme knockout mice, which exhibit deficient IL-1 bioactivity. The level of serum S-SMase activity in LPS-injected IL-1 converting enzyme knockout mice was ≈35% less than that in identically treated wild-type mice (P < 0.01). In LPS-injected IL-1-receptor antagonist knockout mice, which have an enhanced response to IL-1, serum S-SMase activity was increased 1.8-fold compared with LPS-injected wild-type mice (P < 0.01). Finally, when wild-type mice were injected directly with IL-1β, tumor necrosis factor α, or both, serum S-SMase activity increased 1.6-, 2.3-, and 2.9-fold, respectively (P < 0.01). These data show regulation of S-SMase activity in vivo and they raise the possibility that local stimulation of S-SMase may contribute to the effects of inflammatory cytokines in atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants are continuously subjected to UV-B radiation (UV-B; 280–320 nm) as a component of sunlight causing damage to the genome. For elimination of DNA damage, a set of repair mechanisms, mainly photoreactivation, excision, and recombination repair, has evolved. Whereas photoreactivation and excision repair have been intensely studied during the last few years, recombination repair, its regulation, and its interrelationship with photoreactivation in response to UV-B-induced DNA damage is still poorly understood. In this study, we analyzed somatic homologous recombination in a transgenic Arabidopsis line carrying a β-glucuronidase gene as a recombination marker and in offsprings of crosses of this line with a photolyase deficient uvr2–1 mutant. UV-B radiation stimulated recombination frequencies in a dose-dependent manner correlating linearly with cyclobutane pyrimidine dimer (CPD) levels. Genetic deficiency for CPD-specific photoreactivation resulted in a drastic increase of recombination events, indicating that homologous recombination might be directly involved in eliminating CPD damage. UV-B irradiation stimulated recombination mainly in the presence of photosynthetic active radiation (400–700 nm) irrespective of photolyase activities. Our results suggest that UV-B-induced recombination processes may depend on energy supply derived from photosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4–8 h) to UV radiation (10–30 J/m2). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sun exposure has been clearly implicated in premature skin aging and neoplastic development. These features are exacerbated in patients with xeroderma pigmentosum (XP), a hereditary disease, the biochemical hallmark of which is a severe deficiency in the nucleotide excision repair of UV-induced DNA lesions. To develop an organotypic model of DNA repair deficiency, we have cultured several strains of primary XP keratinocytes and XP fibroblasts from skin biopsies of XP patients. XP skin comprising both a full-thickness epidermis and a dermal equivalent was succesfully reconstructed in vitro. Satisfactory features of stratification were obtained, but the expression of epidermal differentiation products, such as keratin K10 and loricrin, was delayed and reduced. In addition, the proliferation of XP keratinocytes was more rapid than that of normal keratinocytes. Moreover, increased deposition of cell attachment proteins, α-6 and β-1 integrins, was observed in the basement membrane zone, and β-1 integrin subunit, the expression of which is normally confined to basal keratinocytes, extended into several suprabasal cell layers. Most strikingly, the in vitro reconstructed XP skin displayed numerous proliferative epidermal invasions within dermal equivalents. Epidermal invasion and higher proliferation rate are reminiscent of early steps of neoplasia. Compared with normal skin, the DNA repair deficiency of in vitro reconstructed XP skin was documented by long-lasting persistence of UVB-induced DNA damage in all epidermal layers, including the basal layer from which carcinoma develops. The availability of in vitro reconstructed XP skin provides opportunities for research in the fields of photoaging, photocarcinogenesis, and tissue therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferating cell nuclear antigen (PCNA) acts as a processivity factor for replicative DNA polymerases and is essential for DNA replication. In vitro studies have suggested a role for PCNA-in the repair synthesis step of nucleotide excision repair, and PCNA interacts with the cyclin-dependent kinase inhibitor p21. However, because of the lack of genetic evidence, it is not clear which of the DNA repair processes are in fact affected by PCNA in vivo. Here, we describe a PCNA mutation, pol30-46, that confers ultraviolet (UV) sensitivity but has no effect on growth or cell cycle progression, and the mutant pcna interacts normally with DNA polymerase delta and epsilon. Genetic studies indicate that the pol30-46 mutation is specifically defective in RAD6-dependent postreplicational repair of UV damaged DNA, and this mutation impairs the error-free mode of bypass repair. These results implicate a role for PCNA as an intermediary between DNA replication and postreplicational DNA repair.