1000 resultados para Baikal Drilling Project
(Table 2) Chemical composition of rhyolitic and basaltic shards from ash layers at DSDP Leg 65 Holes
Resumo:
A quantitative study of late Cenozoic silicoflagellates from the northwestern Pacific sites of Deep Sea Drilling Project Leg 86 shows a relative paleotemperature (Ts) gradient with lowest values (Ts = 30) in the north. Some new ecostratigraphic relations for the region are indicated, such as the last common occurrence of Dictyocha brevispina at 2.6 - 3.0 m.y. ago during a cool interval. Elements of North Pacific and low-latitude biostratigraphic zonations can be identified, but the mixing of cool- and warm-indicator taxa prompted the definition of the new Miocene Mesocena hexalitha Subzone and Pliocene Distephanus jimlingii Subzone. Scanning-electron microscope study of Leg 86 silicoflagellates was done to determine whether various types of skeletal surface texture are temperature dependent. To conduct the study we organized a new surface-texture descriptive code, which characterizes the apical structure/basal ring/spine sequence using new definitions of the terms crenulate (C), linear (L), nodular (N), reticulate (R), and smooth (S). One new silicoflagellate genus, Caryocha Bukry et Monechi, n. gen., is described and several new combinations are made.
Resumo:
Seawater that has been altered by reaction with basaltic basement has been sampled from Deep Sea Drilling Project Hole 504B, located on 5.9-m.y.-old crust on the southern flank of the Costa Rica Rift. Fourteen water samples have been collected on Legs 69, 70, and 83, both before and after renewed drilling on the latter two legs, at temperatures from 69 to 133°C and pressures from 390 to 425 bars. The water sampled prior to renewed drilling on Leg 83 had occupied the hole for nearly 2 yr. since it was last flushed with surface seawater at the end of Leg 70. Despite some contamination by seawater during sampling, the composition of two of these waters has been determined by using nitrate as a tag for the contaminant. Both the 80 and 115°C waters have seawater chlorinity, but have lost considerable Mg, Na, K, sulfate, and 02, and have gained Ca, alkalinity, Si, NH3 and H2S. The loss of sulfate is due to anhydrite precipitation, as indicated by the d34S value of the remaining dissolved sulfate. The 87Sr/86Sr ratio has been lowered to 0.7086 for the 80°C water and 0.7078 for the 115°C water, whereas the Sr concentration is nearly unchanged. The changes in major element composition relative to seawater are also larger for the 115°C water, indicating that the basement formation water at this site probably varies in composition with depth. Based on their direction relative to seawater, the compositional changes for the 80 and 115°C waters do not complement the changes inferred for the altered rocks from Hole 504B, suggesting that the bulk composition of the altered rocks, like their mineralogy, is largely unrelated to the present thermal and alteration regime in the hole. The exact nature of the reacted seawaters cannot be determined yet, however. During its 2 yr. residence in the hole, the surface seawater remaining at the end of Leg 70 would have reacted with the wall rocks and exchanged with their interstitial formation waters by diffusion and possibly convection. How far these processes have proceeded is not yet certain, although calculations suggest that diffusion alone could have largely exchanged the surface seawater for interstitial water. The d18O of the samples is indistinguishable from seawater, however, and the d14C of the 80°C sample is similar to that of ocean bottom water. Although the interpretation of these species is ambiguous, that of tritium should not be. Tritium analyses, which are in progress, should clarify the nature of the reacted seawaters obtained from the hole.
Resumo:
C2-C8 hydrocarbon concentrations (about 35 compounds identified, including saturated, aromatic, and olefinic compounds) from 38 shipboard sealed, deep-frozen core samples of Deep Sea Drilling Project Sites 585 (East Mariana Basin) and 586 (Ontong-Java Plateau) were determined by a gas stripping-thermovaporization method. Total concentrations, which represent the hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces of the sediment, vary from 20 to 630 ng/g of rock at Site 585 (sub-bottom depth range 332-868 m). Likewise, organic-carbon normalized yields range from 3*10**4 to 9*10**5 ng/g Corg, indicating that the organic matter is still in the initial, diagenetic evolutionary stage. The highest value (based on both rock weight and organic carbon) is measured in an extremely organic-carbon-poor sample of Lithologic Subunit VB (Core 585-30). In this unit (504-550 m) several samples with elevated organic-carbon contents and favorable kerogen quality including two thin "black-shale" layers deposited at the Cenomanian/Turonian boundary (not sampled for this study) were encountered. We conclude from a detailed comparison of light hydrocarbon compositions that the Core 585-30 sample is enriched in hydrocarbons of the C2-C8 molecular range, particularly in gas compounds, which probably migrated from nearby black-shale source layers. C2-C8 hydrocarbon yields in Site 586 samples (sub-bottom depth range 27-298 m) did not exceed 118 ng/g of dry sediment weight (average 56 ng/g), indicating the immaturity of these samples.
Resumo:
The upper sections of Deep Sea Drilling Project Sites 576 (32°21.4'N, 164°16.5'E) and 578 (33°55.6'N, 151°37.7'E) both have stable detrital remanence that can be correlated with the standard reversal stratigraphy. Site 576 contains all reversals above the base of the Gilbert Epoch (5 m.y.) at about 25 m, whereas Site 578 contains a remarkable section of about 60 reversals extending to Anomaly 5B (15 m.y.) at about 150 m sub-bottom depth. In both cases, the paleomagnetic stratigraphy breaks down when accumulation rates drop below 2 m/m.y. At both sites, authigenic manganiferous clays deposited from 70 to 16 m.y. ago accumulated at about 0.4 m/m.y. Similarly, at both sites, the Pleistocene pulse of eolian debris increased accumulation rates by about 6 m/m.y.**2. From 16 to 2 m.y. ago, however, sediment accumulated at Site 578 about five times as rapidly as at Site 576, apparently because of augmented input to the western site by bottom currents.