868 resultados para Bacterial inclusion-bodies
Resumo:
Background, aim, and scope A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent way.
Resumo:
The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE) and their biochar (BC). Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene) were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF) and agriculture (AG) -, and the biochar (SF_BC and AG_BC, respectively). Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC) in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD) gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.
Resumo:
The objective of this work was to evaluate the effects of six bacterial strains isolated from Agaricus blazei (ABM) on its cultivation. The six strains were characterized as to their effects on the productivity, polysaccharide-protein complex (PSPC), and polysaccharide contents of ABM cultured on sterilized casing soils. Three isolates enhanced ABM mycelium growth. Inoculation of Arthrobacter sp. or Exiguobacterium sp. on sterile peat casing soil resulted in 64% increase in ABM mushroom total fresh matter yield compared to the uninoculated control. Inoculation of Exiguobacterium sp., Microbacterium esteraromaticum or Pseudomonas resinovorans on sterilized loamy casing soil resulted in 62, 95, and 59% increase in ABM mushroom total fresh matter yield, respectively. The PSPC content in ABM increased 7 to 10% in casing soil inoculated with five of the six isolates compared to the uninoculated control. Exiguobacterium sp. inoculated on casing soil resulted in a mushroom-polysaccharide content 15% higher than the control. Moreover, inoculation of five of the six isolates on the casing soil reduced the harvesting time from 10 to 27 days. The evaluated beneficial microbes improve the yield, PSPC, and polysaccharide contents, besides reducing the harvesting time in ABM culture.
Resumo:
Bacterial reporter cells (i.e. strains engineered to produce easily measurable signals in response to one or more chemical targets) can principally be used to quantify chemical signals and analytes, physicochemical conditions and gradients on a microscale (i.e. micrometer to submillimeter distances), when the reporter signal is determined in individual cells. This makes sense, as bacterial life essentially thrives in microheterogenic environments and single-cell reporter information can help us to understand the microphysiology of bacterial cells and its importance for macroscale processes like pollutant biodegradation, beneficial bacteria-eukaryote interactions, and infection. Recent findings, however, showed that clonal bacterial populations are essentially always physiologically, phenotypically and genotypically heterogeneous, thus emphasizing the need for sound statistical approaches for the interpretation of reporter response in individual bacterial cells. Serious attempts have been made to measure and interpret single-cell reporter gene expression and to understand variability in reporter expression among individuals in a population.
Resumo:
Using numerical simulations of pairs of long polymeric chains confined in microscopic cylinders, we investigate consequences of double-strand DNA breaks occurring in independent topological domains, such as these constituting bacterial chromosomes. Our simulations show a transition between segregated and mixed state upon linearization of one of the modelled topological domains. Our results explain how chromosomal organization into topological domains can fulfil two opposite conditions: (i) effectively repulse various loops from each other thus promoting chromosome separation and (ii) permit local DNA intermingling when one or more loops are broken and need to be repaired in a process that requires homology search between broken ends and their homologous sequences in closely positioned sister chromatid.
Resumo:
Metallic foreign bodies are rarely found in the maxillary sinus, and usually they have a dental origin.Potential complications related to foreign bodies include recurrent sinusitis, rhinolith formation, cutaneous fistula,chemical poisoning, facial neuralgic pain and even malignancies.Two main surgical approaches are currently used for the removal of foreign bodies in the maxillary sinus: the bone flap and the endoscopic sinus techniques. We are reporting two unusual cases of large high-velocity foreign bodies removed by a modified maxillary lateral antrotomy,with free bone flap repositioning and fixation with a titanium miniplate.
Resumo:
In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.
Resumo:
The objective of this work was to evaluate the effect of pelletized or extruded diets, with different levels of carbohydrate and lipid, on the gastrointestinal transit time (GITT) and its modulation in pacu (Piaractus mesopotamicus). One hundred and eighty pacu juveniles were fed with eight isonitrogenous diets containing two carbohydrate levels (40 and 50%) and two lipid levels (4 and 8%). Four diets were pelletized and four were extruded. Carbohydrate and lipid experimental levels caused no changes to the bolus transit time. However, the bolus permanence time was related to diet processing. Fish fed pelletized diets exhibited the highest gastrointestinal transit time. Regression analysis of bolus behavior for pelletized and extruded diets with 4% lipid depicted different fits. GITT regression analysis of fish fed 8% lipid was fitted to a cubic equation and displayed adjustments of food permanence, with enhanced utilization of the diets, either with extruded or pelletized diets. GITT of fish fed extruded diets with 4% lipid was adjusted to a linear equation. The GITT of pacu depends on the diet processing and is affected by dietary levels of lipid and carbohydrate.
Resumo:
The widespread misuse of drugs has increased the number of multiresistant bacteria, and this means that tools that can rapidly detect and characterize bacterial response to antibiotics are much needed in the management of infections. Various techniques, such as the resazurin-reduction assays, the mycobacterial growth indicator tube or polymerase chain reaction-based methods, have been used to investigate bacterial metabolism and its response to drugs. However, many are relatively expensive or unable to distinguish between living and dead bacteria. Here we show that the fluctuations of highly sensitive atomic force microscope cantilevers can be used to detect low concentrations of bacteria, characterize their metabolism and quantitatively screen (within minutes) their response to antibiotics. We applied this methodology to Escherichia coli and Staphylococcus aureus, showing that live bacteria produced larger cantilever fluctuations than bacteria exposed to antibiotics. Our preliminary experiments suggest that the fluctuation is associated with bacterial metabolism.
Resumo:
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.
Resumo:
BACKGROUND: The thiomethyl group of S-adenosylmethionine is often recycled as methionine from methylthioadenosine. The corresponding pathway has been unravelled in Bacillus subtilis. However methylthioadenosine is subjected to alternative degradative pathways depending on the organism. RESULTS: This work uses genome in silico analysis to propose methionine salvage pathways for Klebsiella pneumoniae, Leptospira interrogans, Thermoanaerobacter tengcongensis and Xylella fastidiosa. Experiments performed with mutants of B. subtilis and Pseudomonas aeruginosa substantiate the hypotheses proposed. The enzymes that catalyze the reactions are recruited from a variety of origins. The first, ubiquitous, enzyme of the pathway, MtnA (methylthioribose-1-phosphate isomerase), belongs to a family of proteins related to eukaryotic intiation factor 2B alpha. mtnB codes for a methylthioribulose-1-phosphate dehydratase. Two reactions follow, that of an enolase and that of a phosphatase. While in B. subtilis this is performed by two distinct polypeptides, in the other organisms analyzed here an enolase-phosphatase yields 1,2-dihydroxy-3-keto-5-methylthiopentene. In the presence of dioxygen an aci-reductone dioxygenase yields the immediate precursor of methionine, ketomethylthiobutyrate. Under some conditions this enzyme produces carbon monoxide in B. subtilis, suggesting a route for a new gaseous mediator in bacteria. Ketomethylthiobutyrate is finally transaminated by an aminotransferase that exists usually as a broad specificity enzyme (often able to transaminate aromatic aminoacid keto-acid precursors or histidinol-phosphate). CONCLUSION: A functional methionine salvage pathway was experimentally demonstrated, for the first time, in P. aeruginosa. Apparently, methionine salvage pathways are frequent in Bacteria (and in Eukarya), with recruitment of different polypeptides to perform the needed reactions (an ancestor of a translation initiation factor and RuBisCO, as an enolase, in some Firmicutes). Many are highly dependent on the presence of oxygen, suggesting that the ecological niche may play an important role for the existence and/or metabolic steps of the pathway, even in phylogenetically related bacteria. Further work is needed to uncover the corresponding steps when dioxygen is scarce or absent (this is important to explore the presence of the pathway in Archaea). The thermophile T. tengcongensis, that thrives in the absence of oxygen, appears to possess the pathway. It will be an interesting link to uncover the missing reactions in anaerobic environments.
Resumo:
Combining bacterial bioreporters with microfluidics systems holds great promise for in-field detection of chemical or toxicity targets. Recently we showed how Escherichia coli cells engineered to produce a variant of green fluorescent protein after contact to arsenite and arsenate can be encapsulated in agarose beads and incorporated into a microfluidic chip to create a device for in-field detection of arsenic, a contaminant of well known toxicity and carcinogenicity in potable water both in industrialized and developing countries. Cell-beads stored in the microfluidics chip at -20°C retained inducibility up to one month and we were able to reproducibly discriminate concentrations of 10 and 50 μg arsenite per L (the drinking water standards for European countries and the United States, and for the developing countries, respectively) from the blank in less than 200 minutes. We discuss here the reasons for decreasing bioreporter signal development upon increased storage of cell beads but also show how this decrease can be reduced, leading to a faster detection and a longer lifetime of the device.
Resumo:
The combined action of nisin and lactacin F, two bacteriocins produced by lactic acid bacteria, is additive. In this report, the basis of this effect is examined. Channels formed by lactacin F were studied by experiments using planar lipid bilayers, and bactericidal effects were analyzed by flow cytometry. Lactacin F produced pores with a conductance of 1 ns in black lipid bilayers in 1 mM KClat 10 mV at 20°C. Pore formation was strongly dependent on voltage. Although lactacin F formed pores at very low potential (10 mV), the dependence was exponentialabov e 40 mV. The injuries induced by nisin and lactacin F in the membranes of Lactobacillus helveticus produced different flow cytometric profiles. Probably, when both bacteriocins are present, each acts separately; their cooperation may be due to an increase in the number of single membrane injuries
Resumo:
Since publication of the initial guidelines for the prevention of group B streptococcal disease in 1996, the incidence of perinatal infection has decreased significantly. Intrapartum antibiotic prophylaxis together with appropriate management of neonates at increased risk for early-onset sepsis not only reduces morbidity and mortality, but also decreases the burden of unnecessary or prolonged antibiotic therapy. This article provides healthcare workers in Switzerland with evidence-based and best-practice derived guidelines for the assessment and management of term and late preterm infants (>34 weeks) at increased risk for perinatal bacterial infection. Management of neonates at increased risk for early-onset sepsis depends on clinical presentation and risk factors. Asymptomatic infants with risk factors for early-onset sepsis should be observed closely in an inpatient setting for the first 48 hours of life. Symptomatic neonates must be treated promptly with intravenous antibiotics. As clinical and laboratory signs of neonatal infection are nonspecific, it is mandatory to reevaluate the need for continued antibiotic therapy after 48 hours.