930 resultados para BROWN ADIPOSE-TISSUE
Resumo:
Components of daily energy expenditure were measured serially by whole-body calorimetry in Gambian women before pregnancy and at 6, 12, 18, 24, 30, and 36 wk gestation. Weight gain was (mean +/- SD) 6.8 +/- 2.8 kg, fat deposition was 2.0 +/- 2.5 kg and lean tissue deposition was 5.0 +/- 2.5 kg. Basal metabolic rate (BMR) was depressed during the first 18 wk of gestation, causing total cumulative maintenance costs by week 36 to be 8.4 MJ. Individual responses to pregnancy correlated with changes in body mass (36 wk: delta BMR vs delta weight; r = 0.60, P < 0.01 delta BMR vs delta LBM; r = 0.62, P < 0.01). There was no significant increase in the cost of treadmill exercise (0% slope: F = 0.71, P = 0.64; 5% slope: F = 1.97, P = 0.10), 24-h energy expenditure (F = 0.72, P = 0.64), activity or diet-induced thermogenesis (F = 1.02, P = 0.43), during pregnancy in spite of body weight gain. Total metabolic costs over 36 wk were 144 MJ (fetus 43 MJ, fat deposition 92 MJ, cumulative maintenance costs 8.4 MJ). These were far lower than reported for well-nourished Western populations.
Resumo:
The measurement of fat balance (fat input minus fat output) involves the accurate estimation of both metabolizable fat intake and total fat oxidation. This is possible mostly under laboratory conditions and not yet in free-living conditions. In the latter situation, net fat retention/mobilization can be estimated based on precise and accurate sequential body composition measurements. In case of positive balance, lipids stored in adipose tissue can originate from dietary (exogenous) lipids or from nonlipid precursors, mainly from carbohydrates (CHOs) but also from ethanol, through a process known as de novo lipogenesis (DNL). Basic equations are provided in this review to facilitate the interpretation of the different subcomponents of fat balance (endogenous vs exogenous) under different nutritional circumstances. One difficulty is methodological: total DNL is difficult to measure quantitatively in man; for example, indirect calorimetry only tracks net DNL, not total DNL. Although the numerous factors (mostly exogenous) influencing DNL have been studied, in particular the effect of CHO overfeeding, there is little information on the rate of DNL in habitual conditions of life, that is, large day-to-day fluctuations of CHO intakes, different types of CHO ingested with different glycemic indexes, alcohol combined with excess CHO intakes, etc. Three issues, which are still controversial today, will be addressed: (1) Is the increase of fat mass induced by CHO overfeeding explained by DNL only, or by decreased endogenous fat oxidation, or both? (2) Is DNL different in overweight and obese individuals as compared to their lean counterparts? (3) Does DNL occur both in the liver and in adipose tissue? Recent studies have demonstrated that acute CHO overfeeding influences adipose tissue lipogenic gene expression and that CHO may stimulate DNL in skeletal muscles, at least in vitro. The role of DNL and its importance in health and disease remain to be further clarified, in particular the putative effect of DNL on the control of energy intake and energy expenditure, as well as the occurrence of DNL in other tissues (such as in myocytes) in addition to hepatocytes and adipocytes.
Resumo:
The purpose of this study was to measure postabsorptive fat oxidation at rest and to assess the association between fat mass and fat oxidation rate in prepubertal children, who were assigned to two groups: 35 obese children (weight, 44.5 +/- 9.7 kg; fat mass; 31.7 +/- 5.4%) and 37 nonobese children (weight, 30.8 +/- 6.8 kg; fat mass, 17.5 +/- 6.7%). Postabsorptive fat oxidation expressed in absolute value was significantly higher in obese than in nonobese children (31.4 +/- 9.7 mg/min vs 21.9 +/- 10.2 mg/min; p < 0.001) but not when adjusted for fat-free mass by analysis of covariance with fat-free mass as the covariate (28.2 +/- 10.6 mg/min vs 24.9 +/- 10.5 mg/min). In obese children and in the total group, fat mass and fat oxidation were significantly correlated (r = 0.65; p < 0.001). The slope of the relationship indicated that for each 10 kg additional fat mass, resting fat oxidation increased by 18 gm/day. We conclude that obese prepubertal children have a higher postabsorptive rate of fat oxidation than nonobese children. This metabolic process may favor the achievement of a new equilibrium in fat balance, opposing further adipose tissue gain.
Resumo:
Significance: Current lifestyles with high-energy diets and little exercise are triggering an alarming growth in obesity. Excess of adiposity is leading to severe increases in associated pathologies, such as insulin resistance, type 2 diabetes, atherosclerosis, cancer, arthritis, asthma, and hypertension. This, together with the lack of efficient obesity drugs, is the driving force behind much research. Recent Advances: Traditional anti-obesity strategies focused on reducing food intake and increasing physical activity. However, recent results suggest that enhancing cellular energy expenditure may be an attractive alternative therapy. Critical Issues: This review evaluates recent discoveries regarding mitochondrial fatty acid oxidation (FAO) and its potential as a therapy for obesity. We focus on the still controversial beneficial effects of increased FAO in liver and muscle, recent studies on how to potentiate adipose tissue energy expenditure, and the different hypotheses involving FAO and the reactive oxygen species production in the hypothalamic control of food intake. Future Directions: The present review aims to provide an overview of novel anti-obesity strategies that target mitochondrial FAO and that will definitively be of high interest in the future research to fight against obesity-related disorders.
Resumo:
OBJECTIVES: Little is known regarding the distribution and the determinants of leptin and adiponectin levels in the general population. DESIGN: Cross-sectional study. PATIENTS: Women (3004) and men (2552) aged 35-74 living in Lausanne, Switzerland. MEASUREMENTS: Plasma levels of leptin and adiponectin (ELISA measurement). RESULTS: Women had higher leptin and adiponectin levels than men. In both genders, leptin and adiponectin levels increased with age. After adjusting for fat mass, leptin levels were significantly and negatively associated with age in women: 18.1 +/- 0.3, 17.1 +/- 0.3, 16.7 +/- 0.3 and 15.5 +/- 0.4 ng/ml (adjusted mean +/- SE) for age groups [35-44], [45-54], [55-64] and [65-75], respectively, P < 0.001. A similar but nonsignificant trend was also found in men. Conversely, the age-related increase of adiponectin was unrelated to body fat in both genders. Post-menopausal women had higher leptin and adiponectin levels than premenopausal women, independently of hormone replacement therapy. Although body fat mass was associated with leptin and adiponectin, the associations were stronger with body mass index (BMI), waist and hip in both genders. Finally, after adjusting for age and anthropometry, no relationships were found between leptin or adiponectin levels with alcohol, caffeine consumption and physical activity, whereas smoking and diabetes decreased leptin and adiponectin levels in women only. CONCLUSIONS: The age-related increase in leptin levels is attributable to changes in fat mass in women and probably also in men. Leptin and adiponectin levels are more related to BMI than to body fat mass. The effects of smoking and diabetes appear to be gender-specific.
Resumo:
We studied the variations caused by stress in lipoprotein lipase (LPL) activity, LPL-mRNA, and local blood flow in LPL-rich tissues in the rat. Stress was produced by body immobilization (Immo): the rat's limbs were taped to metal mounts, and its head was placed in a plastic tube. Chronic stress (2 h daily of Immo) decreased total LPL activity in mesenteric and epididymal white adipose tissue (WAT) and was accompanied by a weight reduction of these tissues. In limb muscle, heart, and adrenals, total LPL activity and mRNA levels increased, and, in plasma, LPL activity and mass also increased. Acute stress (30-min Immo) caused a decrease in total LPL activity only in retroperitoneal WAT and an increase in preheparin plasma active LPL, but the overall weight of this tissue did not vary significantly. We propose an early release of the enzyme from this tissue into the bloodstream by some unknown extracellular pathways or other local mechanisms. These changes in this key energy-regulating enzyme are probably induced by catecholamines. They modify the flow of energy substrates between tissues, switching the WAT from importer to exporter of free fatty acids and favoring the uptake by muscle of circulating triacylglycerides for energy supply. Moreover, we found that acute stress almost doubled blood flow in all WAT studied, favoring the export of free fatty acids.
Resumo:
OBJECTIVE: Body mass index does not discriminate body fat from fat-free mass or determine changes in these parameters with physical activity and aging. Body fat mass index (BFMI) and fat-free mass index (FFMI) permit comparisons of subjects with different heights. This study evaluated differences in body mass index, BFMI, and FFMI in physically active and sedentary subjects younger and older than 60 y and determined the association between physical activity, age, and body composition parameters in a healthy white population between ages 18 and 98 y. METHODS: Body fat and fat-free mass were determined in healthy white men (n = 3549) and women (n = 3184), between ages 18 and 98 y, by bioelectrical impedance analysis. BFMI and FFMI (kg/m2) were calculated. Physical activity was defined as at least 3 h/wk of endurance-type activity for at least 2 mo. RESULTS: Physically active as opposed to sedentary subjects were more likely to have a low BFMI (men: odds ratio [OR], 1.4; confidence interval [CI], 0.7-2.5; women: OR 1.9, CI 1.6-2.2) and less likely to have very high BFMI (men: OR, 0.2; CI, 0.1-0.2; women: OR, 0.1; CI, 0.02-0.2), low FFMI (men: OR, 0.5; CI, 0.3-0.9; women: OR, 0.7; CI, 0.6-0.9), or very high FFMI (men: OR, 0.6; CI, 0.4-0.8; women: OR, 0.7; CI, 0.5-1.0). Compared with subjects younger than 60 y, those older than 60 y were more like to have very high BFMI (men: OR, 6.5; CI, 4.5-9.3; women: OR, 14.0; CI, 9.6-20.5), and women 60 y and older were less likely to have a low BFMI (OR, 0.4; CI, 0.2-0.5). CONCLUSIONS: A clear association was found between low physical activity or age and height-normalized body composition parameters (BFMI and FFMI) derived from bioelectrical impedance analysis. Physically active subjects were more likely to have high or very high or low FFMI. Older subjects had higher body weights and BFMI.
Resumo:
An adverse endogenous environment during early life predisposes the organism to develop metabolic disorders. We evaluated the impact of intake of an iso-caloric fructose rich diet (FRD) by lactating mothers (LM) on several metabolic functions of their male offspring. On postnatal d 1, ad libitum eating, lactating Sprague-Dawley rats received either 10% F (wt/vol; FRD-LM) or tap water (controls, CTR-LM) to drink throughout lactation. Weaned male offspring were fed ad libitum a normal diet, and body weight (BW) and food intake were registered until experimentation (60 d of age). Basal circulating levels of metabolic markers were evaluated. Both iv glucose tolerance and hypothalamic leptin sensitivity tests were performed. The hypothalamus was dissected for isolation of total RNA and Western blot analysis. Retroperitoneal (RP) adipose tissue was dissected and either kept frozen for gene analysis or digested to isolate adipocytes or for histological studies. FRD rats showed increased BW and decreased hypothalamic sensitivity to exogenous leptin, enhanced food intake (between 49-60 d), and decreased hypothalamic expression of several anorexigenic signals. FRD rats developed increased insulin and leptin peripheral levels and decreased adiponectinemia; although FRD rats normally tolerated glucose excess, it was associated with enhanced insulin secretion. FRD RP adipocytes were enlarged and spontaneously released high leptin, although they were less sensitive to insulin-induced leptin release. Accordingly, RP fat leptin gene expression was high in FRD rats. Excessive fructose consumption by lactating mothers resulted in deep neuroendocrine-metabolic disorders of their male offspring, probably enhancing the susceptibility to develop overweight/obesity during adult life.
Resumo:
Dynamic changes in body weight have long been recognized as important indicators of risk for debilitating diseases. While weight loss or impaired growth can lead to muscle wastage, as well as to susceptibility to infections and organ dysfunctions, the development of excess fat predisposes to type 2 diabetes and cardiovascular diseases, with insulin resistance as a central feature of the disease entities of the metabolic syndrome. Although widely used as the phenotypic expression of adiposity in population and gene-search studies, body mass index (BMI), that is, weight/height(2) (H(2)), which was developed as an operational definition for classifying both obesity and malnutrition, has considerable limitations in delineating fat mass (FM) from fat-free mass (FFM), in particular at the individual level. After an examination of these limitations within the constraints of the BMI-FM% relationship, this paper reviews recent advances in concepts about health risks related to body composition phenotypes, which center upon (i) the partitioning of BMI into an FM index (FM/H(2)) and an FFM index (FFM/H(2)), (ii) the partitioning of FFM into organ mass and skeletal muscle mass, (iii) the anatomical partitioning of FM into hazardous fat and protective fat and (iv) the interplay between adipose tissue expandability and ectopic fat deposition within or around organs/tissues that constitute the lean body mass. These concepts about body composition phenotypes and health risks are reviewed in the light of race/ethnic variability in metabolic susceptibility to obesity and the metabolic syndrome.
Resumo:
Although metabolic syndrome (MS) and systemic lupus erythematosus (SLE) are often associated, a common link has not been identified. Using the BWF1 mouse, which develops MS and SLE, we sought a molecular connection to explain the prevalence of these two diseases in the same individuals. We determined SLE- markers (plasma anti-ds-DNA antibodies, splenic regulatory T cells (Tregs) and cytokines, proteinuria and renal histology) and MS-markers (plasma glucose, non-esterified fatty acids, triglycerides, insulin and leptin, liver triglycerides, visceral adipose tissue, liver and adipose tissue expression of 86 insulin signaling-related genes) in 8-, 16-, 24-, and 36-week old BWF1 and control New-Zealand-White female mice. Up to week 16, BWF1 mice showed MS-markers (hyperleptinemia, hyperinsulinemia, fatty liver and visceral adipose tissue) that disappeared at week 36, when plasma anti-dsDNA antibodies, lupus nephritis and a pro-autoimmune cytokine profile were detected. BWF1 mice had hyperleptinemia and high splenic Tregs till week 16, thereby pointing to leptin resistance, as confirmed by the lack of increased liver P-Tyr-STAT-3. Hyperinsulinemia was associated with a down-regulation of insulin related-genes only in adipose tissue, whereas expression of liver mammalian target of rapamicyn (mTOR) was increased. Although leptin resistance presented early in BWF1 mice can slow-down the progression of autoimmunity, our results suggest that sustained insulin stimulation of organs, such as liver and probably kidneys, facilitates the over-expression and activity of mTOR and the development of SLE.
Resumo:
White adipose tissue (WAT) produces lactate in significant amount from circulating glucose, especially in obesity;Under normoxia, 3T3L1 cells secrete large quantities of lactate to the medium, again at the expense of glucose and proportionally to its levels. Most of the glucose was converted to lactate with only part of it being used to synthesize fat. Cultured adipocytes were largely anaerobic, but this was not a Warburg-like process. It is speculated that the massive production of lactate, is a process of defense of the adipocyte, used to dispose of excess glucose. This way, the adipocyte exports glucose carbon (and reduces the problem of excess substrate availability) to the liver, but the process may be also a mechanism of short-term control of hyperglycemia. The in vivo data obtained from adipose tissue of male rats agree with this interpretation.
Resumo:
Recent genome-wide association (GWA) studies described 95 loci controlling serum lipid levels. These common variants explain ∼25% of the heritability of the phenotypes. To date, no unbiased screen for gene-environment interactions for circulating lipids has been reported. We screened for variants that modify the relationship between known epidemiological risk factors and circulating lipid levels in a meta-analysis of genome-wide association (GWA) data from 18 population-based cohorts with European ancestry (maximum N = 32,225). We collected 8 further cohorts (N = 17,102) for replication, and rs6448771 on 4p15 demonstrated genome-wide significant interaction with waist-to-hip-ratio (WHR) on total cholesterol (TC) with a combined P-value of 4.79×10(-9). There were two potential candidate genes in the region, PCDH7 and CCKAR, with differential expression levels for rs6448771 genotypes in adipose tissue. The effect of WHR on TC was strongest for individuals carrying two copies of G allele, for whom a one standard deviation (sd) difference in WHR corresponds to 0.19 sd difference in TC concentration, while for A allele homozygous the difference was 0.12 sd. Our findings may open up possibilities for targeted intervention strategies for people characterized by specific genomic profiles. However, more refined measures of both body-fat distribution and metabolic measures are needed to understand how their joint dynamics are modified by the newly found locus.
Resumo:
Determination of fat-free mass (FFM) and fat mass (FM) is of considerable interest in the evaluation of nutritional status. In recent years, bioelectrical impedance analysis (BIA) has emerged as a simple, reproducible method used for the evaluation of FFM and FM, but the lack of reference values reduces its utility to evaluate nutritional status. The aim of this study was to determine reference values for FFM, FM, and %FM by BIA in a white population of healthy subjects, to observe the changes in these values with age, and to develop percentile distributions for these parameters. Whole-body resistance of 1838 healthy white men and 1555 women, aged 15-64 y, was determined by using four skin electrodes on the right hand and foot. FFM and FM were calculated according to formulas validated for the subject groups and analyzed for age decades. This is the first study to present BIA-determined age- and sex-specific percentiles for FFM, FM, and %FM for healthy subjects, aged 15-64 y. Mean FM and %FM increased progressively in men and after age 45 y in women. The results suggest that any weight gain noted with age is due to a gain in FM. In conclusion, the data presented as percentiles can serve as reference to evaluate the normality of body composition of healthy and ill subject groups at a given age.
Resumo:
Aim: The obesity epidemic has increased the number of obese patients admitted to the ICU. In vitro studies suggest that adipose tissue response to inflammation is enhanced: in vivo data are not conclusive yet. The aim of this study was to test the physiologic response of healthy obese subjects to a standardized intravenous LPS challenge.Methods: Prospective single-blind, randomized, cross-over study in eight subjects (four men, four women), aged 34 +/- 7 years, BMI 34.7 +/- 4.2, without glucose intolerance and lipid abnormalities, testing the impact of intravenous LPS (2 ng kg(-1) of actual body weight) versus placebo.Results: Temperature, hemodynamic variables, indirect calorimetry and blood samples (TNF-alpha, IL-6, stress hormones, hs-CRP) were collected. After LPS temperature, heart rate. TNF-alpha and IL-6 concentrations and stress hormones (cortisol and glucagon) increased significantly, with maximal responses between 120 and 240 min after the injection. The pattern, the timing and the magnitude of change were similar to those observed in lean subjects.Conclusion: This study shows that healthy obese subjects have a similar response pattern to intravenous LPS as described in lean subjects.