908 resultados para BRCA1, DNA damage, genome stability, DNA repair, mRNA splicing
Resumo:
Defects in the XPG DNA repair endonuclease gene can result in the cancer-prone disorders xeroderma pigmentosum (XP) or the XP–Cockayne syndrome complex. While the XPG cDNA sequence was known, determination of the genomic sequence was required to understand its different functions. In cells from normal donors, we found that the genomic sequence of the human XPG gene spans 30 kb, contains 15 exons that range from 61 to 1074 bp and 14 introns that range from 250 to 5763 bp. Analysis of the splice donor and acceptor sites using an information theory-based approach revealed three splice sites with low information content, which are components of the minor (U12) spliceosome. We identified six alternatively spliced XPG mRNA isoforms in cells from normal donors and from XPG patients: partial deletion of exon 8, partial retention of intron 8, two with alternative exons (in introns 1 and 6) and two that retained complete introns (introns 3 and 9). The amount of alternatively spliced XPG mRNA isoforms varied in different tissues. Most alternative splice donor and acceptor sites had a relatively high information content, but one has the U12 spliceosome sequence. A single nucleotide polymorphism has allele frequencies of 0.74 for 3507G and 0.26 for 3507C in 91 donors. The human XPG gene contains multiple splice sites with low information content in association with multiple alternatively spliced isoforms of XPG mRNA.
Resumo:
The quality of germ cell DNA is critical for the fate of the offspring, yet there is limited knowledge of the DNA repair capabilities of such cells. One of the main DNA repair pathways is base excision repair (BER) which is initiated by DNA glycosylases that excise damaged bases, followed by incision of the generated abasic (AP) sites. We have studied human and rat methylpurine-DNA glycosylase (MPG), uracil-DNA glycosylase (UNG), and the major AP endonuclease (HAP1/APEX) in male germ cells. Enzymatic activities and western analyses indicate that these enzymes are present in human and rat male germ cells in amounts that are at least as high as in somatic cells. Minor differences were observed between different cellular stages of rat spermatogenesis and spermiogenesis. Repair of methylated DNA was also studied at the cellular level using the Comet assay. The repair was highly efficient in both human and rat male germ cells, in primary spermatocytes as well as round spermatids, compared to rat mononuclear blood cells or hepatocytes. This efficient BER removes frequently occurring DNA lesions that arise spontaneously or via environmental agents, thereby minimising the number of potential mutations transferred to the next generation.
Resumo:
Alternative reproductive cycles make use of different strategies to generate different reproductive products. In Escherichia coli, recA and several other rec genes are required for the generation of recombinant genomes during Hfr conjugation. During normal asexual reproduction, many of these same genes are needed to generate clonal products from UV-irradiated cells. However, unlike conjugation, this latter process also requires the function of the nucleotide excision repair genes. Following UV irradiation, the recovery of DNA replication requires uvrA and uvrC, as well as recA, recF, and recR. The rec genes appear to be required to protect and maintain replication forks that are arrested at DNA lesions, based on the extensive degradation of the nascent DNA that occurs in their absence. The products of the recJ and recQ genes process the blocked replication forks before the resumption of replication and may affect the fidelity of the recovery process. We discuss a model in which several rec gene products process replication forks arrested by DNA damage to facilitate the repair of the blocking DNA lesions by nucleotide excision repair, thereby allowing processive replication to resume with no need for strand exchanges or recombination. The poor survival of cellular populations that depend on recombinational pathways (compared with that in their excision repair proficient counterparts) suggests that at least some of the rec genes may be designed to function together with nucleotide excision repair in a common and predominant pathway by which cells faithfully recover replication and survive following UV-induced DNA damage.
Resumo:
Carriers of BRCA2 germline mutations are at high risk to develop early-onset breast cancer. The underlying mechanisms of how BRCA2 inactivation predisposes to malignant transformation have not been established. Here, we provide direct functional evidence that human BRCA2 promotes homologous recombination (HR), which comprises one major pathway of DNA double-strand break repair. We found that up-regulated HR after transfection of wild-type (wt) BRCA2 into a human tumor line with mutant BRCA2 was linked to increased radioresistance. In addition, BRCA2-mediated enhancement of HR depended on the interaction with Rad51. In contrast to the tumor suppressor BRCA1, which is involved in multiple DNA repair pathways, BRCA2 status had no impact on the other principal double-strand break repair pathway, nonhomologous end joining. Thus, there exists a specific regulation of HR by BRCA2, which may function to maintain genomic integrity and suppress tumor development in proliferating cells.
Resumo:
DNA damage-inducible mutagenesis in Escherichia coli is largely dependent upon the activity of the UmuD (UmuD') and UmuC proteins. The intracellular level of these proteins is tightly regulated at both the transcriptional and the posttranslational levels. Such regulation presumably allows cells to deal with DNA damage via error-free repair pathways before being committed to error-prone pathways. We have recently discovered that as part of this elaborate regulation, both the UmuD and the UmuC proteins are rapidly degraded in vivo. We report here that the enzyme responsible for their degradation is the ATP-dependent serine protease, Lon. In contrast, UmuD' (the posttranslational product and mutagenically active form of UmuD) is degraded at a much reduced rate by Lon, but is instead rapidly degraded by another ATP-dependent protease, ClpXP. Interestingly, UmuD' is rapidly degraded by ClpXP only when it is in a heterodimeric complex with UmuD. Formation of UmuD/UmuD' heterodimers in preference to UmuD' homodimers therefore targets UmuD' protein for proteolysis. Such a mechanism allows cells to reduce the intracellular levels of the mutagenically active Umu proteins and thereby return to a resting state once error-prone DNA repair has occurred. The apparent half-life of the heterodimeric UmuD/D' complex is greatly increased in the clpX::Kan and clpP::Kan strains and these strains are correspondingly rendered virtually UV non-mutable. We believe that these phenotypes are consistent with the suggestion that while the UmuD/D' heterodimer is mutagenically inactive, it still retains the ability to interact with UmuC, and thereby precludes the formation of the mutagenically active UmuD'2C complex.
Resumo:
Agents that damage DNA in Escherichia coli or interfere with its replication induce DNA repair and mutagenesis via the SOS response. This well-known activity is regulated by the RecA protein and the LexA repressor. Following repair or bypass of the DNA lesion, the cell returns to its resting state by a largely unknown process. We found that 2-keto-4-hydroxyglutarate aldolase (4-hydroxy-2-oxoglutarate aldolase; EC 4.1.3.16) is necessary for the recovery of respiration and that it is regulated by the SOS response. This protein was induced by DNA-damaging agents. Induction required RecA activation. When the LexA regulon was repressed, activation of RecA was not sufficient for induction, indicating the requirement for an additional protein under LexA control. Finally, a mutant in the corresponding hga gene was UV sensitive. 2-Keto-4-hydroxyglutarate aldolase also plays a role in respiratory metabolic pathways, which suggests a mechanism for respiration resumption during the termination of the SOS response.
Resumo:
DNA repair is required by organisms to prevent the accumulation of mutations and to maintain the integrity of genetic information. Mammalian cells that have been treated with agents that damage DNA have an increase in p53 levels, a p53-dependent arrest at G1 in the cell cycle, and a p53-dependent apoptotic response. It has been hypothesized that this block in cell cycle progression is necessary to allow time for DNA repair or to direct the damaged cell to an apoptotic pathway. This hypothesis predicts that p53-deficient cells would have an abnormal apoptotic response and exhibit a "mutator" phenotype. Using a sensitive assay for the accumulation of point mutations, small deletions, and insertions, we have directly tested whether p53-deficient cells exhibit an increased frequency of mutation before and after exposure to DNA-damaging agents. We report that wild-type and p53-deficient fibroblasts, thymocytes, and tumor tissue have indistinguishable rates of point mutation accumulation in a transgenic lacI target gene. These results suggest that the role of p53 in G1 checkpoint control and tumor suppression does not affect the accumulation of point mutations.
Resumo:
Introduction Les lésions induites par les rayons UV peuvent causer des blocages dans la réplication de l'ADN. Ces dommages sont éliminés par le processus moléculaire très conservé de réparation par excision de nucléotides (NER). Nous avons précédemment démontré que la protéine ATR, une kinase majeure impliquée dans le stress réplicatif, est requise pour une NER efficace, et ce exclusivement durant la phase S. Des résultats subséquents ont suggéré que ce prérequis n’était pas lié à la réponse induite par ATR, mais plutôt d’une conséquence globale causée par la présence de stress réplicatif. En ce sens, nous mettons l’emphase qu’après irradiation UV, le complexe RPA joue un rôle crucial dans l'activation des mécanismes de NER ainsi que dans le redémarrage des fourches de réplication bloquées. Hypothèses: En général, les mutations qui confèrent une augmentation du stress réplicatif engendrent une séquestration excessive du facteur RPA aux fourches de réplication bloquées ce qui réduit son accessibilité pour le NER. Méthodes et résultats: Le modèle de la levure a été choisi pour vérifier cette hypothèse. Nous avons développé un essai de NER spécifique à chacune des phases du cycle cellulaire pour démontrer que les cellules déficientes en Mec1, l’homologue d’ATR, sont défectives dans la réparation par excision de nucléotides spécifiquement en phase S. De plus, plusieurs autres mutants de levure, caractérisés par un niveau de dommages spontanés élevé, ont aussi exhibé un défaut similaire. Ces mutants ont démontré une fréquence et une intensité de formation de foyers de RPA plus élevée. Finalement, une diminution partielle de RPA dans les levures a induit un défaut significatif dans le NER spécifiquement durant la phase S. Conclusion: Nos résultats supportent la notion que la séquestration de RPA aux fourches de réplication endommagées durant la phase S prévient son utilisation pour la réparation par excision de nucléotides ce qui inhibe fortement l'efficacité de réparation. Cette étude chez la levure facilite l’élucidation du phénomène analogue chez l’humain et, ultimement, comprend des implications majeures dans la compréhension du mécanisme de développement des cancers UV-dépendants.
Resumo:
Cells respond to genotoxic insults such as ionizing radiation by halting in the G(2) phase of the cell cycle. Delayed cell death (mitotic death) can occur when the cell is released from G(2), and specific spindle defects form endopolyploid cells (endoreduplication/tetraploidy). Enhanced G(2) chromosomal radiosensitivity has been observed in many cancers and genomic instability syndromes, and it is manifested by radiation-induced chromatid aberrations observed in lymphocytes of patients. Here we compare the G(2) chromosomal radiosensitivity in prostate patients with benign prostatic hyperplasia (BPH) or prostate cancer with disease-free controls. We also investigated whether there is a correlation between G(2) chromosomal radiosensitivity and aneuploidy (tetraploidy and endoreduplication), which are indicative of mitotic cell death. The G(2) assay was carried out on all human blood samples. Metaphase analysis was conducted on the harvested chromosomes by counting the number of aberrations and the mitotic errors (endoreduplication/tetraploidy) separately per 100 metaphases. A total of 1/14 of the controls were radiosensitive in G(2) compared to 6/15 of the BPH patients and 15/17 of the prostate cancer patients. Radiation-induced mitotic inhibition was assessed to determine the efficacy of G(2) checkpoint control in the prostate patients. There was no significant correlation of G(2) radiosensitivity scores and mitotic inhibition in BPH patients (P = 0.057), in contrast to prostate cancer patients, who showed a small but significant positive correlation (P = 0.029). Furthermore, there was no significant correlation between G(2) radiosensitivity scores of BPH patients and endoreduplication/ tetraploidy (P = 0.136), which contrasted with an extremely significant correlation observed in prostate cancer patients (P < 0.0001). In conclusion, cells from prostate cancer patients show increased sensitivity to the induction of G(2) aberrations from ionizing radiation exposure but paradoxically show reduced mitotic indices and aneuploidy as a function of aberration frequency.
Resumo:
To study the dynamics of protein recruitment to DNA lesions, ion beams can be used to generate extremely localized DNA damage within restricted regions of the nuclei. This inhomogeneous spatial distribution of lesions can be visualized indirectly and rapidly in the form of radiation-induced foci using immunocytochemical detection or GFP-tagged DNA repair proteins. To analyze faster protein translocations and a possible contribution of radiation-induced chromatin movement in DNA damage recognition in live cells, we developed a remote-controlled system to obtain high-resolution fluorescence images of living cells during ion irradiation with a frame rate of the order of seconds. Using scratch replication labeling, only minor chromatin movement at sites of ion traversal was observed within the first few minutes of impact. Furthermore, time-lapse images of the GFP-coupled DNA repair protein aprataxin revealed accumulations within seconds at sites of ion hits, indicating a very fast recruitment to damaged sites. Repositioning of the irradiated cells after fixation allowed the comparison of live cell observation with immunocytochemical staining and retrospective etching of ion tracks. These results demonstrate that heavy-ion radiation-induced changes in sub-nuclear structures can be used to determine the kinetics of early protein recruitment in living cells and that the changes are not dependent on large-scale chromatin movement at short times postirradiation. © 2005 by Radiation Research Society.
Resumo:
The KIAA0101/p15(PAF)/OEATC-1 protein was initially isolated in a yeast two-hybrid screen for proliferating cell nuclear antigen (PCNA) binding partners, and was shown to bind PCNA competitively with the cell cycle regulator p21(WAF). PCNA is involved in DNA replication and damage repair. Using polyclonal antisera raised against a p15(PAF) fusion protein, we have shown that in a range of mammalian tumor and non-tumor cell lines the endogenous p15(PAF) protein localises to the nucleus and the mitochondria. Under normal conditions no co-localisation with PCNA could be detected, however following exposure to UV it was possible to co-immunoprecipitate p15(PAF) and PCNA from a number of cell lines, suggesting a UV-enhanced association of the two proteins. Overexpression of p15(PAF) in mammalian cells was also found to protect cells from UV-induced cell death. Based on similarities between the behaviour of p15(PAF) and the potential tumor suppressor product p33ING1b, we have further shown that these two proteins interact in the same complex in cell cultures. This suggests that p15(PAF) forms part of a larger protein complex potentially involved in the regulation of DNA repair, apoptosis and cell cycle progression. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
We have previously tested the effects of high dose AA supplements on human volunteers in terms of reducing DNA damage, as a possible mechanism of the vitamin’s proposed protective effect against cancer and detected a transient, pro-oxidant effect at high doses (500 mg/day). Herein, we present evidence of a pro-oxidant effect of the vitamin when added to CCRF cells at extracellular concentrations which mimic those present in human serum in vivo (50–150AM). The activation of the transcription factor AP-1 was optimal at 100 AM AA following 3h exposure at 37jC. A minimum dose of 50 AM of AA activated NFnB but there appeared to be no dose-dependent effect. Increases of 2–3 fold were observed for both transcription factors when cells were exposed to 100 AM AA for 3h, comparing well with the pro-oxidant effect of H2O2 at similar concentrations. In parallel experiments the activation of AP-1 (binding to DNA) was potentiated when cells were pre-incubated with AA prior to exposure with H2O2. Cycloheximide pretreatment (10 Ag/ml for 15min) caused a 50% inhibition of AP-1 binding to DNA suggesting that it was due to a combination of increasing the binding of pre-existing Fos and Jun and an increase in their de novo synthesis. Cellular localisation was confirmed by immunocytochemistry using antibodies specific for c-Fos and c-Jun proteins. These results suggest that extracellular AA can elicit an intracellular stress response resulting in the activation of the oxidative stress-responsive transcription factors AP-1 and NFnB. These transcription factors are involved in the induction of genes associated with an oxidative stress response, cell cycle arrest and DNA repair confirmed by our cDNA microarray analysis (Affymetrix). This may explain the abilty for AA to appear to inhibit 8-oxodG, yet simultaneously generate another oxidative stress biomarker, 8-oxo-dA. These results suggest a completely novel DNA repair action for AA. Whether this action is relevant to our in vivo findings will be the subject of our future research.
Resumo:
The imidazotetrazinones are clinically active antitumour agents, temozolomide currently proving successful in the treatment of melanomas and gliomas. The exact nature of the biological processes underlying response are as yet unclear.This thesis attempts to identify the cellular targets important to the cytotoxicity of imidazotetrazinones, to elucidate the pathways by which this damage leads to cell death, and to identify mechanisms by which tumour cells may circumvent this action. The levels of the DNA repair enzymes O6-alkylguanine-DNA-alkyltransferase (O6-AGAT) and 3-methyladenine-DNA-glycosylase (3MAG) have been examined in a range of murine and human cell lines with differential sensitivity to temozolomide. All the cell lines were proficient in 3MAG despite there being 40-fold difference in sensitivity to temozolomide. This suggests that while 3-methyladenine is a major product of temozolomide alkylation of DNA it is unlikely to be a cytotoxic lesion. In contrast, there was a 20-fold variation in O6-AGAT levels and the concentration of this repair enzyme correlated with variations in cytotoxicity. Furthermore, depletion of this enzyme in a resistant, O6-AGAT proficient cell line (Raji), by pre-treatment with the free base O6-methylguanine resulted in 54% sensitisation to the effects of temozolomide. These observations have been extended to 3 glioma cell lines; results that support the view that the cytotoxicity of temozolomide is related to alkylation at the O6-position of guanine and that resistance to this drug is determined by efficient repair of this lesion. It is clear, however, the other factors may influence tumour response since temozolomide showed little differential activity towards 3 established solid murine tumours in vivo, despite different tumour O6-AGAT levels. Unlike mitozolomide, temozolomide is incapable of cross-linking DNA and a mechanism by which O6-methylguanine may exert lethality is unclear. The cytotoxicity of the methyl group may be due to its disruption of DNA-protein interactions, or alternatively cell death may not be a direct result of the alkyl group itself, but manifested by DNA single-strand breaks. Enhanced alkaline elution rates were found for the DNA of Raji cells treated with temozolomide following alkyltransferase depletion, suggesting a relationship between O6-methylguanine and the induction single-strand breaks. Such breaks can activate poly(ADP-ribose) synthetase (ADPRT) an enzyme capable of rapid and lethal depletion of cellular NAD levels. However, at concentrations of temozolomlde relevant in vivo little change in adenine nucleotides was detected in cell lines, although this enzyme would appear important in modulating DNA repair since inhibition of ADPRT potentiated temozolomide cytotoxicity in Raji cells but not O6-AGAT deficient GM892A cells. Cell lines have been reported that are O6-AGAT deficient yet resistant to methylating agents. Thus, resistance to temozolomide may arise not only by removal of the methyl group from the O6-position of guanine, but also from another mechanism involving caffeine-sensitive post-replication repair or mismatch repair activity. A modification of the standard Maxam Gilbert sequencing technique was used to determine the sequence specificity of guanine-N7 alkylation. Temozolomide preferentially alkylated runs of guanines with the intensity of reaction increasing with the number of adjacent guanines in the DNA sequence. Comparable results were obtained with a polymerase-stop assay, although neither technique elucidates the sequence specificity of O6-guanine alkylation. The importance of such specificity to cytotoxicity is uncertain, although guanine-rich sequences are common to the promoter regions of oncogenes. Expression of a plasmid reporter gene under the control of the Ha-ras proto~oncogene promoter was inhibited by alkylation with temozolomide when transfected into cancer cell lines, However, this inhibition did not appear to be related to O6~guanine alkylation and therefore would seem unimportant to the chemotherapeutic activity of temozolomide.
Resumo:
In many parts of the world, plants are directly utilised for their medicinal properties. Traditional medicine from Pakistan, India and the Far East is well documented and its history is embedded in folklore. It has been documented that an aqueous extract of the desert shrub, Fagonia cretica, is a popular treatment for breast cancer in Pakistan. The administration of an aqueous extract of Fagonia cretica is reported effective at reducing tumour size and improving the quality of life of breast cancer patients, is well tolerated and does not exhibit adverse effects like vomiting, diarrhoea or alopecia which are common side effects of standard cytotoxic therapy. In the past, many pharmacologically active and chemotherapeutic compounds have been isolated from plants which subsequently have proven to be successful in clinical trials and been used as primary compounds in therapeutic regimes. Fagonia cretica has historical use as a treatment for breast cancer, yet there is little scientific evidence which shows chemotherapeutic potential towards breast tumours. Preparation and analysis of an aqueous extract of Fagonia cretica may reveal novel chemotherapeutic agents that can be used to effectively target cancer cells. An understanding of the mechanism of any activity may improve our understanding of cancer cell biology and reveal novel therapeutic targets. This thesis describes for the first time that an aqueous extract of Fagonia cretica shows potent in vitro cytotoxic activity towards breast cancer epithelial cell lines which was not seen towards normal mammary epithelial cells. Elucidation and characterisation of the cytotoxic mechanism was undertaken by analysing DNA damage, cell cycle status, apoptosis, metabolic state and expression of transcription factors and their targets. Finally, methods for the isolation and identification of active compound(s) were developed using various chromatographic techniques. An aqueous extract of Fagonia cretica was able to reduce cell viability significantly in two phenotypically different breast cancer cell lines (MCF-7 and MDA-MB-231). This activity was markedly reduced in normal mammary epithelial cells (HMEpC). Further investigation into the mode of action revealed that extract treatment induced cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cell lines. This coincided with the formation of DNA double stranded breaks and the DNA repair marker ?-H2AX. In MCF-7 cells, ATM/ATR activation resulted in increased p53 expression and of its transcriptional targets p21 and bax, suggesting a role for a p53-mediated response. Furthermore, inhibition of extract-induced p53 expression with siRNA reduced the cytotoxic effect against MCF-7 cells. Extract treatment was also associated with increased FOXO3a expression in MCF-7 and MDA-MB-231 cells. In the absence of functional p53, siRNA knockdown of extract-induced FOXO3a expression was completely abrogated, suggesting that FOXO3a plays a vital role in extract-induced cytotoxicity. Isolation and characterisation of the active compound(s) within the extract was attempted using liquid chromatography and mass spectrometry in conjunction with a cell viability assay. Multiple fractionations generated an active fraction that contained four major compounds as detected by mass spectrometry. However, none of these compounds were identified structurally or chemically due to constraints within the methodology.
Resumo:
Base excision repair (BER) and nucleotide excision repair (NER) pathways play critical role in maintaining genome integrity. Polymorphisms in BER and NER genes which modulate the DNA repair capacity may affect the susceptibility and prognosis of oral cancer. This study was conducted with genomic DNA from 92 patients with oral squamous cell carcinomas (OSCC) and 130 controls. The cases were followed up to explore the associations between BER and NER genes polymorphisms and the risk and prognosis of OSCC. Four single-nucleotide polymorphisms (SNPs) in XRCC1 (rs25487), APEX1 (rs1130409), XPD (rs13181) and XPF (rs1799797) genes were tested by polymerase chain reaction – quantitative real time method. The GraphPad Prism version 6.0.1 statistical software was applied for statistical analysis of association. Odds ratio (OR), hazard ratio (HR), and their 95 % confidence intervals (CIs) were calculated by logistic regression. Kaplan-Meier curve and Cox proportional hazard model were used for prognostic analysis. The presence of polymorphic variants in XRCC1, APEX1, XPD and XPF genes were not associated with an increased risk of OSCC. Gene-environment interactions with smoking were not significant for any polymorphism. The presence of polymorphic variants of the XPD gene in association with alcohol consumption conferred an increased risk of 1.86 (95% CI: 0.86 – 4.01, p=0.03) for OSCC. Only APEX1 was associated with decreased specific survival (HR 3.94, 95% CI: 1.31 – 11.88, p=0.01). These results suggest an interaction between polymorphic variants of the XPF gene and alcohol consumption. Additionally APEX1 may represent a prognostic marker for OSCC.