931 resultados para BRAF mutation
Resumo:
Using properties of moment stationarity we develop exact expressions for the mean and covariance of allele frequencies at a single locus for a set of populations subject to drift, mutation, and migration. Some general results can be obtained even for arbitrary mutation and migration matrices, for example: (1) Under quite general conditions, the mean vector depends only on mutation rates, not on migration rates or the number of populations. (2) Allele frequencies covary among all pairs of populations connected by migration. As a result, the drift, mutation, migration process is not ergodic when any finite number of populations is exchanging genes. in addition, we provide closed form expressions for the mean and covariance of allele frequencies in Wright's finite-island model of migration under several simple models of mutation, and we show that the correlation in allele frequencies among populations can be very large for realistic rates of mutation unless an enormous number of populations are exchanging genes. As a result, the traditional diffusion approximation provides a poor approximation of the stationary distribution of allele frequencies among populations. Finally, we discuss some implications of our results for measures of population structure based on Wright's F-statistics.
Resumo:
Colorectal cancer is the forth most common diagnosed cancer in the United States. Every year about a hundred forty-seven thousand people will be diagnosed with colorectal cancer and fifty-six thousand people lose their lives due to this disease. Most of the hereditary nonpolyposis colorectal cancer (HNPCC) and 12% of the sporadic colorectal cancer show microsatellite instability. Colorectal cancer is a multistep progressive disease. It starts from a mutation in a normal colorectal cell and grows into a clone of cells that further accumulates mutations and finally develops into a malignant tumor. In terms of molecular evolution, the process of colorectal tumor progression represents the acquisition of sequential mutations. ^ Clinical studies use biomarkers such as microsatellite or single nucleotide polymorphisms (SNPs) to study mutation frequencies in colorectal cancer. Microsatellite data obtained from single genome equivalent PCR or small pool PCR can be used to infer tumor progression. Since tumor progression is similar to population evolution, we used an approach known as coalescent, which is well established in population genetics, to analyze this type of data. Coalescent theory has been known to infer the sample's evolutionary path through the analysis of microsatellite data. ^ The simulation results indicate that the constant population size pattern and the rapid tumor growth pattern have different genetic polymorphic patterns. The simulation results were compared with experimental data collected from HNPCC patients. The preliminary result shows the mutation rate in 6 HNPCC patients range from 0.001 to 0.01. The patients' polymorphic patterns are similar to the constant population size pattern which implies the tumor progression is through multilineage persistence instead of clonal sequential evolution. The results should be further verified using a larger dataset. ^
Resumo:
Thoracic Aortic Aneurysms and Dissections (TAAD) are the fifteenth leading cause of death in the United States. About 15% of TAAD patients have family history of the disease. The most commonly mutated gene in these families is ACTA2, encoding smooth muscle-specific α-actin. ACTA2 missense mutations predispose individuals both to TAAD and to vascular occlusive disease of small, muscular arteries. Mice carrying an Acta2 R258C mutant transgene with a wildtype Acta2 promoter were generated and bred with Acta2-/- mice to decrease the wildtype: mutant Acta2 ratio. Acta2+/+ R258C TGmice have decreased aortic contractility without aortic disease. Acta2+/- R258C TG mice, however, have significant aortic dilatations by 12 weeks of age and a hyperproliferative response to injury. We characterized smooth muscle cells (SMCs) from bothmouse models under the hypothesis that mutant α-actin has a dominant negative effect, leading to impaired contractile filament formation/stability, improper focal adhesion maturation and increased proliferation. Explanted aortic SMCs from Acta2+/+ R258C TG mice are differentiated - they form intact filaments, express higher levels of contractile markers compared to wildtype SMCs and have predominantly nuclear Myocardin-Related Transcription Factor A (MRTF-A) localization. However, ultracentrifugation assays showed large unpolymerized actin fractions, suggesting that the filaments are brittle. In contrast, Acta2+/- R258C TG SMCs are less well-differentiated, with pools of unpolymerized actin, more cytoplasmic MRTF-A and decreased contractile protein expression compared to wildtype cells. Ultracentrifugation assays after treating Acta2+/- R258C TGSMCs with phalloidin showed actin filament fractions, indicating that mutant α-actin can polymerize into filaments. Both Acta2+/+ R258C TGand Acta2+/- R258C TGSMCs have larger and more peripheral focal adhesions compared to wildtype SMCs. Rac1 was more activated in Acta2+/+ R258C TGSMCs; both Rac1 and RhoA were less activated in Acta2+/- R258C TG SMCs, and FAK was more activated in both transgenic SMC lines compared to wildtype. Proliferation in both cell lines was significantly increased compared to wildtype cells and could be partially attenuated by inhibition of FAK or PDGFRβ. These data support a dominant negative effect of the Acta2 R258C mutation on the SMC phenotype, with increasing phenotypic severity when wildtype: mutant α-actin levels are decreased.
Resumo:
The tumor suppressor p53 is a phosphoprotein which functions as a transcriptional activator. By monitoring the transcriptional activity, we studied how p53 functions is regulated in relation to cell growth and contact inhibition. When cells were arrested at G1 phase of the cell cycle by contact inhibition, we found that p53 transactivation function was suppressed. When contact inhibition was overridden by cyclin E overexpression which stimulates cell cycle progression, p53 function was restored. This observation led to the development of a cell density assay to study the regulation of p53 function during cell cycle for the functional significance of p53 phosphorylation. The murine p53 is phosphorylated at serines 7, 9, 12, 18, 37, 312 and 389. To understand the role of p53 phosphorylation, we generated p53 constructs encoding serine-to-alanine or serine-to-glutamate mutations at these codons. The transcriptional activity were measured in cells capable of contact inhibition. In low-density cycling cells, no difference in transcriptional activity was found between wild type p53 and any of the mutants. In contact-inhibited cells, however, only mutations of p53 at serine 389 resulted in altered responses to cell cycle arrest and to cyclin E overexpression. The mutant with serine-to-glutamate substitution at codon 389 retained its function in contact inhibited cells. Cyclin E overexpression in these cells induced p53 phosphorylation at serine 389. Furthermore, we showed that phosphorylation at serine 389 regulates p53 DNA binding activity. Our findings implicate that phosphorylation is an important mechanism for p53 activation.^ p53 is the most frequently mutated gene in human tumors. To study the mechanism of p53 inactivation by mutations, we carried out detailed analysis of a murine p53 mutation with an arginine-to-tryptophane substitution at codon 245. The corresponding human p53 mutation at amino acid 248 is the most frequently mutated codon in tumors. We showed that this mutant is inactive in suppressing focus formation, binding to DNA and transactivation. Structural analysis revealed that this mutant assumes the wild type protein conformation. These findings define a novel class of p53 mutations and help to understand structure-function relationship of p53. ^
Resumo:
Missense mutations in the p53 tumor-suppressor gene are the most common alterations of p53 in somatic tumors and in patients with Li-Fraumeni syndrome. p53 missense mutations occur in the DNA binding region and disrupt the ability of p53 to activate transcription. In vitro studies have shown that some p53 missense mutants have a gain-of-function or dominant-negative activity. ^ The p53 175 Arg-to-His (p53 R175H) mutation in humans has been shown to have dominant-negative and gain-of-function properties in vitro. This mutation is observed in the germline of individuals with Li-Fraumeni syndrome. To accurately model Li-Fraumeni syndrome and to examine the mechanistic nature of a gain-of-function missense mutation on in vivo tumorigenesis, we generated and characterized a mouse with the corresponding mutation, p53 R172H. p53R172H homozygous and heterozygous mice developed similar tumor spectra and survival curves as p53 −/− and p53+/− mice, respectively. However, tumors in p53+/R172H mice metastasized to various organs with high frequency, suggesting a gain-of-function phenotype by p53R172H in vivo. Mouse embryonic fibroblasts (MEFs) from p53R172H mice also showed gain-of-function phenotypes in cell proliferation, DNA synthesis, and transformation potential, while cells from p53+/− and p53−/− mice did not. ^ To mechanistically characterize the gain-of-function phenotype of the p53R172H mutant, the role of p53 family members, p63 and p73, was analyzed. Disruption of p63 and p73 by siRNAs in p53 −/− MEFs increased transformation potential and reinitiated DNA synthesis to levels observed in p53R172H/R172H cells. Additionally, p63 and p73 were bound and functionally inactivated by p53R172H in metastatic p53 R172H tumor-derived cell lines, indicating a role for the p53 family members in the gain-of-function phenotype. This study provides in vivo evidence for the gain-of-function effect of p53 missense mutations and more accurately models the Li-Fraumeni syndrome. ^
Resumo:
Singlet oxygen is a prominent form of reactive oxygen species in higher plants. It is easily formed from molecular oxygen by triplet–triplet interchange with excited porphyrin species. Evidence has been obtained from studies on the flu mutant of Arabidopsis thaliana of a genetically determined cell death pathway that involves differential changes at the transcriptome level. Here we report on a different cell death pathway that can be deduced from the analysis of oep16 mutants of A. thaliana. Pure lines of four independent OEP16-deficient mutants with different cell death properties were isolated. Two of the mutants overproduced free protochlorophyllide (Pchlide) in the dark because of defects in import of NADPH:Pchlide oxidoreductase A (pPORA) and died after illumination. The other two mutants avoided excess Pchlide accumulation. Using pulse labeling and polysome profiling studies we show that translation is a major site of cell death regulation in flu and oep16 plants. flu plants respond to photooxidative stress triggered by singlet oxygen by reprogramming their translation toward synthesis of key enzymes involved in jasmonic acid synthesis and stress proteins. In contrast, those oep16 mutants that were prone to photooxidative damage were unable to respond in this way. Together, our results show that translation is differentially affected in the flu and oep16 mutants in response to singlet oxygen.
Resumo:
Deficiency in genes involved in DNA mismatch repair increases susceptibility to cancer, particularly of the colorectal epithelium. Using Msh2 null mice, we demonstrate that this genetic defect renders normal intestinal epithelial cells susceptible to mutation in vivo at the Dlb-1 locus. Compared with wild-type mice, Msh2-deficient animals had higher basal levels of mutation and were more sensitive to the mutagenic effects of temozolomide. Experiments using Msh2-deficient cells in vitro suggest that an element of this effect is attributable to increased clonogenicity. Indeed, we show that Msh2 plays a role in the in vivo initiation of apoptosis after treatment with temozolomide, N-methyl-N′-nitro-N-nitrosoguanidine, and cisplatin. This was not influenced by the in vivo depletion of O6-alkylguanine-DNA-alkyltransferase after administration of O6-benzylguanine . By analyzing mice mutant for both Msh2 and p53, we found that the Msh2-dependent apoptotic response was primarily mediated through a p53-dependent pathway. Msh2 also was required to signal delayed p53-independent death. Taken together, these studies characterize an in vivo Msh2-dependent apoptotic response to methylating agents and raise the possibility that Msh2 deficiency may predispose to malignancy not only through failed repair of mismatch DNA lesions but also through the failure to engage apoptosis.
Resumo:
We have identified a novel β amyloid precursor protein (βAPP) mutation (V715M-βAPP770) that cosegregates with early-onset Alzheimer’s disease (AD) in a pedigree. Unlike other familial AD-linked βAPP mutations reported to date, overexpression of V715M-βAPP in human HEK293 cells and murine neurons reduces total Aβ production and increases the recovery of the physiologically secreted product, APPα. V715M-βAPP significantly reduces Aβ40 secretion without affecting Aβ42 production in HEK293 cells. However, a marked increase in N-terminally truncated Aβ ending at position 42 (x-42Aβ) is observed, whereas its counterpart x-40Aβ is not affected. These results suggest that, in some cases, familial AD may be associated with a reduction in the overall production of Aβ but may be caused by increased production of truncated forms of Aβ ending at the 42 position.
Resumo:
Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer’s disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer’s disease, we generated PS1 mutant knock-in mice and directly tested the excitotoxic and neurotrophic hypotheses of Alzheimer’s disease. Primary hippocampal neurons from PS1 mutant knock-in mice exhibited increased production of amyloid β-peptide 42/43 and increased vulnerability to excitotoxicity, which occurred in a gene dosage-dependent manner. Neurons expressing mutant PS1 exhibited enhanced calcium responses to glutamate and increased oxyradical production and mitochondrial dysfunction. Pretreatment with either basic fibroblast growth factor or activity-dependent neurotrophic factor protected neurons expressing mutant PS1 against excitotoxicity. Both basic fibroblast growth factor and activity-dependent neurotrophic factor stabilized intracellular calcium levels and abrogated the increased oxyradical production and mitochondrial dysfunction otherwise caused by the PS1 mutation. Our data indicate that neurotrophic factors can interrupt excitotoxic neurodegenerative cascades promoted by PS1 mutations.
Resumo:
Central core disease is a rare, nonprogressive myopathy that is characterized by hypotonia and proximal muscle weakness. In a large Mexican kindred with an unusually severe and highly penetrant form of the disorder, DNA sequencing identified an I4898T mutation in the C-terminal transmembrane/luminal region of the RyR1 protein that constitutes the skeletal muscle ryanodine receptor. All previously reported RYR1 mutations are located either in the cytoplasmic N terminus or in a central cytoplasmic region of the 5,038-aa protein. The I4898T mutation was introduced into a rabbit RYR1 cDNA and expressed in HEK-293 cells. The response of the mutant RyR1 Ca2+ channel to the agonists halothane and caffeine in a Ca2+ photometry assay was completely abolished. Coexpression of normal and mutant RYR1 cDNAs in a 1:1 ratio, however, produced RyR1 channels with normal halothane and caffeine sensitivities, but maximal levels of Ca2+ release were reduced by 67%. [3H]Ryanodine binding indicated that the heterozygous channel is activated by Ca2+ concentrations 4-fold lower than normal. Single-cell analysis of cotransfected cells showed a significantly increased resting cytoplasmic Ca2+ level and a significantly reduced luminal Ca2+ level. These data are indicative of a leaky channel, possibly caused by a reduction in the Ca2+ concentration required for channel activation. Comparison with two other coexpressed mutant/normal channels suggests that the I4898T mutation produces one of the most abnormal RyR1 channels yet investigated, and this level of abnormality is reflected in the severe and penetrant phenotype of affected central core disease individuals.
Resumo:
The epithelial Na+ channel (ENaC) belongs to a new class of channel proteins called the ENaC/DEG superfamily involved in epithelial Na+ transport, mechanotransduction, and neurotransmission. The role of ENaC in Na+ homeostasis and in the control of blood pressure has been demonstrated recently by the identification of mutations in ENaC β and γ subunits causing hypertension. The function of ENaC in Na+ reabsorption depends critically on its ability to discriminate between Na+ and other ions like K+ or Ca2+. ENaC is virtually impermeant to K+ ions, and the molecular basis for its high ionic selectivity is largely unknown. We have identified a conserved Ser residue in the second transmembrane domain of the ENaC α subunit (αS589), which when mutated allows larger ions such as K+, Rb+, Cs+, and divalent cations to pass through the channel. The relative ion permeability of each of the αS589 mutants is related inversely to the ionic radius of the permeant ion, indicating that αS589 mutations increase the molecular cutoff of the channel by modifying the pore geometry at the selectivity filter. Proper geometry of the pore is required to tightly accommodate Na+ and Li+ ions and to exclude larger cations. We provide evidence that ENaC discriminates between cations mainly on the basis of their size and the energy of dehydration.
Resumo:
We have identified the mutation responsible for the autosomal recessive wasted (wst) mutation of the mouse. Wasted mice are characterized by wasting and neurological and immunological abnormalities starting at 21 days after birth; they die by 28 days. A deletion of 15.8 kb in wasted mice abolishes expression of a gene called Eef1a2, encoding a protein that is 92% identical at the amino acid level to the translation elongation factor EF1α (locus Eef1a). We have found no evidence for the involvement of another gene in this deletion. Expression of Eef1a2 is reciprocal with that of Eef1a. Expression of Eef1a2 takes over from Eef1a in heart and muscle at precisely the time at which the wasted phenotype becomes manifest. These data suggest that there are tissue-specific forms of the translation elongation apparatus essential for postnatal survival in the mouse.