978 resultados para BOILING NUCLEATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aqueous solutions of Al and Mg nitrates have been spray pyrolysed at 673 K to synthesize powders with compositions varying between MgO and MgAl2O4. This has been carried out with the aim of studying phase selection and phase evolution in this system. The powders have been subsequently heat treated and the sequence of phases characterised by X-ray diffraction and transmission electron microscopy. Metastable extensions of the different phase fields have been calculated based on functions which predict the equilibrium phase diagram accurately. The appearance of phases is closely related to the temperature and to the non-stoichiometry in different compositional ranges of the system. The sequence of phase evolution has been correlated to the thermodynamics of nucleation in the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review here our understanding of the sliding wear phenomenon: some generalities have emerged in the last 50 years of research, these can now be taken as established principles and be used for practical design and maintenance. Other issues related for example to nano-wear, the role of microstructure on wear or mechanism of crack nucleation require renewed efforts, for greater predictivity in wear. The review is based on published literature with examples principally drawn from our work on sliding wear of metals and ceramics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Addition of boron to cast Ti-6Al-4V alloy leads to significant refinement in grain size, which in turn improves processibilty as well as the mechanical properties of the as-cast alloy. Room temperature tensile and fatigue properties of Wrought Ti-6Al-4V-B alloys with B up to 0.09 wt.% are investigated. Thermo-mechanical processing at 950 degrees C caused kinking of alpha lamellae and alignment of TiB particles in the flow direction with a negligible change in prior beta grain and colony sizes, indicating the absence of dynamic recrystallisation during forging. Characterisation with the aid of X-ray and electron back scattered diffraction reveal a strong basal texture in B free alloy which gets randomised with the 0.09B addition in the forged condition. Marginal enhancement in tensile and fatigue properties upon forging is noted. B free wrought Ti-6Al-4V alloy exhibits better tensile strength as compared to B containing alloy, due to the operation of < c+a > slip on pyramidal planes with high value of CRSS as compared to < a > slip on basal and prismatic planes. Decrease in fatigue strength of Ti-6Al-4V-0.04B in as-cast and the wrought state is observed due to increase in the volume fraction of grain boundary a phase with B addition, which acts as a crack nucleation site. No significant effect of TiB particles on tensile and fatigue properties is observed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A careful comparison of the experimental results reported in the literature reveals different variations of the melting temperature even for the same materials. Though there are different theoretical models, thermodynamic model has been extensively used to understand different variations of size-dependent melting of nanoparticles. There are different hypotheses such as homogeneous melting (HMH), liquid nucleation and growth (LNG) and liquid skin melting (LSM) to resolve different variations of melting temperature as reported in the literature. HMH and LNG account for the linear variation where as LSM is applied to understand the nonlinear behaviour in the plot of melting temperature against reciprocal of particle size. However, a bird's eye view reveals that either HMH or LSM has been extensively used by experimentalists. It has also been observed that not a single hypothesis can explain the size-dependent melting in the complete range. Therefore we describe an approach which can predict the plausible hypothesis for a given data set of the size-dependent melting temperature. A variety of data have been analyzed to ascertain the hypothesis and to test the approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a novel and simple solution-based technique for depositing 2-D zinc oxide platelets at low temperature. Nanoplatelets that were mostly a-oriented associated with the Lotgering orientation factor of 0.65 were obtained by locating a glass substrate at a distance of about 5cm over the aqueous vapour of the boiling precursor. Experiments were carried out to optimize the coating parameters by placing the substrate at different positions, durations and the pH of the precursor. The X-ray diffraction studies confirmed the structure associated with the crystallites to be wurzite. The different morphology of the zinc oxide films and blue light emission were observed using scanning electron microscopy and fluorescence spectroscopy respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have postulated a novel pathway that could assist in the nucleation of soot particles through covalent dimerization and oligomerizations of a variety of PAHs. DFT calculations were performed with the objective of obtaining the relative thermal stabilities and formation probabilities of oligomeric species that exploit the facile dimerization that is known to occur in linear oligoacenes. We propose that the presence of small stretches of linear oligoacence (tetracene or longer) in extended PAH, either embedded or tethered, would be adequate for enabling the formation of such dimeric and oligomeric adducts; these could then serve as nuclei for the growth of soot particles. Our studies also reveal the importance of p-stacking interactions between extended aromatic frameworks in governing the relative stabilities of the oligomeric species that are formed. (c) 2012 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have demonstrated a simple, scalable and inexpensive method based on microwave plasma for synthesizing 5 to 10 g/h of nanomaterials. Luminescent nano silicon particles were synthesized by homogenous nucleation of silicon vapour produced by the radial injection of silicon tetrachloride vapour and nano titanium nitride was synthesized by using liquid titanium tetrachloride as the precursor. The synthesized nano silicon and titanium nitride powders were characterized by XRD, XPS, TEM, SEM and BET. The characterization techniques indicated that the synthesized powders were indeed crystalline nanomaterials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper reports the effect of the addition of small amount of Al on the microstructure and properties of HITPERM class rapidly solidified Fe44Co44Zr7B4Cu1 glassy alloy. Using three dimensional atom probe measurements we present evidence for the formation of Cu clusters on annealing in the metallic glass matrix of the Al containing alloy Fe43Co43Al2Zr7B4Cu1. Such clusters are otherwise absent in the parent alloy under similar conditions. The Cu clusters provides heterogeneous nucleation sites for the formation of bcc alpha'-FeCo phase leading to an increase in number density of this nanocrystalline phase and thereby enhancing the magnetic properties. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a green method for the synthesis of ZnO-Au hybrids using an ultrafast microwave-based technique. This method provides good control over the nucleation of the metal nanoparticles on the oxide support, which governs the morphology and microstructure of the hybrids. The hybrids exhibit good catalytic activity for CO oxidation compared to similar hybrids reported in the literature. Detailed XPS investigation reveals the presence of Au-Zn and Au-O bonds at the interface. This surface doping leads to the formation of anionic and cationic Au sites that contribute to the enhanced activity. Our method is general and can be applied for designing other supported catalysts with controlled interfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A steady state kinetic model has been developed for the vapor-liquid-solid growth of Si whiskers or nanowires from liquid catalyst droplets. The steady state is defined as one in which the net injection rate of Si into the droplet is equal to the ejection rate due to wire growth. Expressions that represent specific mechanisms of injection and ejection of Si atoms from the liquid catalyst droplet have been used and their relative importance has been discussed. The analysis shows that evaporation and reverse reaction rates need to be invoked, apart from just surface cracking of the precursor, in order to make the growth rate radius dependent. When these pathways can be neglected, the growth rate become radius independent and can be used to determine the activation energies for the rate limiting step of heterogeneous precursor decomposition. The ejection rates depend on the mechanism of wire growth at the liquid-solid interface or the liquid-solid-vapor triple phase boundary. It is shown that when wire growth is by nucleation and motion of ledges, a radius dependence of growth rate does not just come from the Gibbs-Thompson effect on supersaturation in the liquid, but also from the dependence of the actual area or length available for nucleation. Growth rates have been calculated using the framework of equations developed and compared with experimental results. The agreement in trends is found to be excellent. The same framework of equations has also been used to account for the diverse pressure and temperature dependence of growth rates reported in the literature. © 2012 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes, as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNHx polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nucleation and growth of vanadium oxide nanotubes (VOx-NT) have been followed by a combination of numerous ex situ techniques. long the hydrothermal process. Intermediate solid phases extracted at different reaction times have been characterized by powder X-ray diffraction, scanning and transmission electron microscopy, electron spin resonance, and V-K edge :X-ray absorption near-edge structure spectroscopy. The supernatant vanadate solutions extracted during the hydrothermal treatment have been studied by liquid V-51 NMR and flame. spectroscopy. For short durations of the hydrothermal synthesis, the initial V2O5-surfactant intercalate. is progressively transformed into VOx-NT whose crystallization starts to be detected after a hydrothermal treatment of 24 h. Upon heating from 24 h to 7 days, VOx-NT are obtained in larger amount and with an improved crystallinity. The detection of soluble amines and cyclic metavanadate V4O12](4-) in the supernatant solution along the hydrothermal process suggests that VOx-NT result from a dissolution precipitation mechanism. Metavanadate species V4O12](4-) could behave as molecular precursors in the polymerization reactions leading to VOx-NT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding and controlling growth stress is a requisite for integrating oxides with Si. Yttria stabilized zirconia (YSZ) is both an important functional oxide and a buffer layer material needed for integrating other functional oxides. Stress evolution during the growth of (100) and (111) oriented YSZ on Si (100) by radio frequency and reactive direct current sputtering has been investigated with an in-situ monitor and correlated with texture evolution. Films nucleated at rates <5 nm/min are found to be (111) oriented and grow predominantly under a compressive steady state stress. Films nucleated at rates >20 nm/min are found to be (100) oriented and grow under tension. A change in growth rate following the nucleation stage does not change the orientation. The value of the final steady state stress varies from -4.7 GPa to 0.3 GPa. The in-situ studies show that the steady state stress generation is a dynamic phenomenon occurring at the growth surface and not decided at film nucleation. The combination of stress evolution and texture evolution data shows that the adatom injection into the grain boundaries is the predominant source of compressive stress and grain boundary formation at the growth surface is the source of tensile stress. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4757924]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a simple, template free and low-temperature hydrothermal reaction pathway using Cu(II) - thiourea complex (prepared in situ from copper (II) chloride and thiourea as precursors) and citric acid as complexing agent to synthesize two-dimensional hierarchical nano-structures of covellite (CuS). The product was characterized with the help of X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis of X-ray spectroscopy (EDAX) and X-ray photoelectron spectroscopy (XPS). The concentration of citric acid in the hydrothermal precursor solution was seen to have a profound effect on the nanostructure of the product generated. Based on the outcoming product nano-architecture at different concentration of the ionic surfactant in the hydrothermal precursor solution a possible mechanism suited for reaction and further nucleation is also discussed. (C) 2012 Elsevier B.V. All rights reserved.