831 resultados para BARIUM FLUORIDE NANOPARTICLES
Resumo:
Solid lipid nanoparticles (SLNs), loaded and unloaded with praziquantel (PRZ-load SLN and PRZ-unload SLN) were prepared by two different procedures: (a) oil-in-water hot microemulsion method, obtaining at 70 degrees C an optically transparent blend composed of surfactant, co-surfactant, and water; and (b) oil-in-water microemulsion method, dissolving the lipid in an immiscible organic solvent, emulsified in water containing surfactants and co-surfactant, and then evaporated under reduced pressure at 50 degrees C. The mean diameter, polydispersity index (PdI), and zeta potential were 187 to 665 nm, 0.300 to 0.655, and -25 to -28 mV respectively, depending on the preparation method. The components, binary mixture, SLNs loaded and unloaded with PRZ, and physical mixture were evaluated by differential scanning calorimetry (DSC) and thermogravimetry (TG). The non-isothermal isoconversional Flynn-Wall-Ozawa method was used to determine the kinetic parameters associated with the thermal decomposition of the samples. The experimental data indicated a linear relationship between the apparent activation energy E and the pre-exponential factor A, also called the kinetic compensation effect (KCE), allowing us to determine the stability with respect to the preparation method. Loading with PRZ increased the thermal stability of the SLNs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The well-known polymeric precursor route is a simple and low-cost sol-gel method based on the preparation of an aqueous precursor solution of metals followed by the addition of a water-soluble polymer. This method consists of a polyesterification process between a metal chelate complex by using a hydroxycarboxylic acid and a polyhydroxy alcohol. In this work, citric acid (CA), tartaric acid (TA) and ethylenediaminetetraacetic acid (EDTA) are used as the hydroxycarboxylic acid and ethylene glycol (EG) is used as the polyhydroxy alcohol. The effects of the precursor pH solution, time and temperature of polymerization step as well as the combination of different chelating agents in order to obtain nanoscopic YBa2Cu3Oy samples were traced. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nanoparticles of octakis[3-(3-amino-1,2,4-triazole)propyl]octasilsesquioxane (ATZ-SSQ) were tested as ligands, for transition-metal ions in aqueous solution with a special attention to sorption isotherms, ligand-metal interaction, and determination of metal ions in natural waters. The adsorption potential of the material ATZ-SSQ was compared with related [3(3-amino-1,2,4-triazole)propyl]silica gel (ATZ-SG). The adsorption was performed using a batchwise process and both organofunctionalized surfaces showed the ability to adsorb the metal ions from aqueous solution. The Langmuir model was used to simulate the sorption isotherms. The results suggest that the sorption of these metals on ATZ-SSQ and ATZ-SG occurs mainly by surface complexation. The equilibrium condition is reached at time lower than 3 min for ATZ-SSQ, while for ATZ-SG is only reached at time of 25 min. The maximum metal ion uptake values for ATZ-SSQ were higher than the corresponding values achieved with the ATZ-SG. In order to obtain more information on the ligand-metal interaction of the complexes on the surface of the ATZ-SSQ nanomaterial, ESR study with various degrees of copper loadings was carried out. The ATZ-SSQ was tested for the determination (in flow using a column technique) of the metal ions present in natural waters. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The goal of this study was to investigate the ability of fluoride to modulate the genotoxic effects induced by the oxidative agent hydrogen peroxide (H2O2) and the alkylating agent methyl methanesulfonate (MMS) in vitro by the single-cell gel ( comet) assay. Chinese hamster ovary cells were exposed in culture for 1 h at 37 degrees C to sodium fluoride at 7-100 mu g/ml. NaF-treated and control cells were then incubated with 0-10 mu M MMS in phosphate-buffered saline (PBS) for 15 min at 37 degrees C, or 7-100 mu M H2O2 in distilled water for 5 min on ice. Negative control cells were treated with PBS for 1 h at 37 degrees C. Clear concentration-related effects were observed for the two genotoxins. Increase of DNA damage induced by either MMS or H2O2 was not significantly altered by pretreatment with NaF. The data indicate that NaF does not modulate alkylation-induced genotoxicity or oxidative DNA damage as measured by the single-cell gel ( comet) assay. Copyright (c) 2007 S. Karger AG, Basel
Resumo:
Fluoride has been widely used in dentistry because it is an effective caries prophylactic agent. However, excess fluoride may represent a hazard to human health, especially by causing injury on the genetic apparatus. Genotoxicity tests form an important part of cancer research and risk assessment of potential carcinogens. In the current study, the potential DNA damage associated with exposure to fluoride was assessed by the single cell gel ( comet) assay in peripheral blood, oral mucosa and brain cells in vivo. Male Wistar rats were exposed to sodium fluoride (NaF) at a 0, 7 and 100 ppm dose for drinking water during 6 weeks. The results pointed out that NaF did not contribute to the DNA damage in all cellular types evaluated as depicted by the mean tail moment and tail intensity. These findings are clinically important since they represent an important contribution to the correct evaluation of the potential health risk associated with dental agents exposure. Copyright (C) 2004 S. Karger AG, Basel.
Resumo:
Fluoride has been widely used in dentistry as a caries prophylactic agent. However, there has been some speculation that excess fluoride could cause an impact on genome integrity. In the current study, the potential DNA damage associated with exposure to fluoride was assessed in cells of blood, liver, kidney, thyroid gland and urinary bladder by the single cell gel (comet) assay. Male Wistar rats aging 75 days were distributed into seven groups: Groups 1 (control), 2, 3, 4, 5, 6 and 7 received 0 (deionized water), 10, 20, 40, 60, 80 and 100 mgF/Kg body weight from sodium fluoride (NaF), respectively, by gastrogavage. These groups were killed at 2 h after the administration of the fluoride doses. The level of DNA strand breaks did not increase in all organs evaluated and at all doses of NaF tested, as depicted by the mean tail moment. Taken together, our results suggest that oral exposure to NaF did not result in systemic genotoxic effect in multiple organs related to fluoride toxicity. Since DNA damage is an important step in events leading to carcinogenesis, this study represents a relevant contribution to the correct evaluation of the potential health risk associated with chemical exposure.