934 resultados para Axle Load
Resumo:
L’intégration du génome du virus papilloma humain (VPH) a été reconnu jusqu’`a récemment comme étant un événnement fréquent mais pourtant tardif dans la progression de la maladie du col de l’utérus. La perspective temporelle vient, pourtant, d’être mise au défi par la détection de formes intégrées de VPH dans les tissus normaux et dans les lésions prénéoplasiques. Notre objectif était de déterminer la charge virale de VPH-16 et son état physique dans une série de 220 échantillons provenant de cols uterins normaux et avec des lésions de bas-grade. La technique quantitative de PCR en temps réel, méthode Taqman, nous a permis de quantifier le nombre de copies des gènes E6, E2, et de la B-globine, permettant ainsi l’évaluation de la charge virale et le ratio de E6/E2 pour chaque spécimen. Le ratio E6/E2 de 1.2 ou plus était suggestif d’intégration. Par la suite, le site d’intégration du VPH dans le génome humain a été déterminé par la téchnique de RS-PCR. La charge virale moyenne était de 57.5±324.6 copies d'ADN par cellule et le ratio E6/E2 a évalué neuf échantillons avec des formes d’HPV intégrées. Ces intégrants ont été amplifiés par RS-PCR, suivi de séquençage, et l’homologie des amplicons a été déterminée par le programme BLAST de NCBI afin d’identifier les jonctions virales-humaines. On a réussi `a identifier les jonctions humaines-virales pour le contrôle positif, c'est-à-dire les cellules SiHa, pourtant nous n’avons pas detecté d’intégration par la technique de RS-PCR dans les échantillons de cellules cervicales exfoliées provenant de tissus normaux et de lésions de bas-grade. Le VPH-16 est rarement intégré dans les spécimens de jeunes patientes.
Resumo:
Usage of a dielectric multilayer around a dielectric Sample is studied as a means for improving the efficiency in multimode microwave- heating cavities. The results show that by using additional dielectric constant layers the appearance of undesired reflections at the sample-air interface is avoided and higher power -absorption rates within the sample and high -efficiency designs are obtained
Resumo:
Soil microorganisms play a main part in organic matter decomposition and are consequently necessary to soil ecosystem processes maintaining primary productivity of plants. In light of current concerns about the impact of cultivation and climate change on biodiversity and ecosystem performance, it is vital to expand a complete understanding of the microbial community ecology in our soils. In the present study we measured the depth wise profile of microbial load in relation with important soil physicochemical characteristics (soil temperature, soil pH, moisture content, organic carbon and available NPK) of the soil samples collected from Mahatma Gandhi University Campus, Kottayam (midland region of Kerala). Soil cores (30 cm deep) were taken and the cores were separated into three 10-cm depths to examine depth wise distribution. In the present study, bacterial load ranged from 141×105 to 271×105 CFU/g (10cm depth), from 80×105 to 131×105 CFU/g (20cm depth) and from 260×104 to 47×105 CFU/g (30cm depth). Fungal load varies from 124×103 to 27×104 CFU/g, from 61×103 to110×103 CFU/g and from 16×103 to 49×103 CFU/g at 10, 20 and 30 cm respectively. Actinomycetes count ranged from 129×103 to 60×104 CFU/g (10cm), from 70×103 to 31×104 CFU/g (20cm) and from 14×103 to 66×103 CFU/g (30cm). The study revealed that there was a significant difference in the depthwise distribution of microbial load and soil physico-chemical properties. Bacterial, fungal and actinomycetes load showed a decreasing trend with increasing depth at all the sites. Except pH all other physicochemical properties showed decreasing trend with increasing depth. The vertical profile of total microbial load was well matched with the depthwise profiles of soil nutrients and organic carbon that is microbial load was highest at the soil surface where organics and nutrients were highest
Resumo:
The present thesis concentrates largely on sound radiation from floating structure due to moving load
Resumo:
We propose antimicrobial photodynamic therapy (aPDT) as an alternative strategy to reduce the use of antibiotics in shrimp larviculture systems. The growth of a multiple antibiotic resistant Vibrio harveyi strain was effectively controlled by treating the cells with Rose Bengal and photosensitizing for 30 min using a halogen lamp. This resulted in the death of > 50% of the cells within the first 10 min of exposure and the 50% reduction in the cell wall integrity after 30 min could be attributed to the destruction of outer membrane protein of V. harveyi by reactive oxygen intermediates produced during the photosensitization. Further, mesocosm experiments with V. harveyi and Artemia nauplii demonstrated that in 30 min, the aPDT could kill 78.9% and 91.2% of heterotrophic bacterial and Vibrio population respectively. In conclusion, the study demonstrated that aPDT with its rapid action and as yet unreported resistance development possibilities could be a propitious strategy to reduce the use of antibiotics in shrimp larviculture systems and thereby, avoid their hazardous effects on human health and the ecosystem at large.
Resumo:
Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year
Resumo:
Resumen tomado de la publicaci??n
Resumo:
The study reported presents the findings relating to commercial growing of genetically-modified Bt cotton in South Africa by a large sample of smallholder farmers over three seasons (1998/99, 1999/2000, 2000/01) following adoption. The analysis presents constructs and compares groupwise differences for key variables in Bt v. non-Bt technology and uses regressions to further analyse the production and profit impacts of Bt adoption. Analysis of the distribution of benefits between farmers due to the technology is also presented. In parallel with these socio-economic measures, the toxic loads being presented to the environment following the introduction of Bt cotton are monitored in terms of insecticide active ingredient (ai) and the Biocide Index. The latter adjusts ai to allow for differing persistence and toxicity of insecticides. Results show substantial and significant financial benefits to smallholder cotton growers of adopting Bt cotton over three seasons in terms of increased yields, lower insecticide spray costs and higher gross margins. This includes one particularly wet, poor growing season. In addition, those with the smaller holdings appeared to benefit proportionately more from the technology (in terms of higher gross margins) than those with larger holdings. Analysis using the Gini-coefficient suggests that the Bt technology has helped to reduce inequality amongst smallholder cotton growers in Makhathini compared to what may have been the position if they had grown conventional cotton. However, while Bt growers applied lower amounts of insecticide and had lower Biocide Indices (per ha) than growers of non-Bt cotton, some of this advantage was due to a reduction in non-bollworm insecticide. Indeed, the Biocide Index for all farmers in the population actually increased with the introduction of Bt cotton. The results indicate the complexity of such studies on the socio-economic and environmental impacts of GM varieties in the developing world.
Resumo:
The aim of this work is to study the hydrochemical variations during flood events in the Rio Tinto, SW Spain. Three separate rainfall/flood events were monitored in October 2004 following the dry season. In general, concentrations markedly increased following the first event (Fe from 99 to 1130 mg/L; Q(max) = 0.78 m(3)/s) while dissolved loads peaked in the second event (Fe = 7.5 kg/s, Cu = 0.83 kg/s, Zn = 0.82 kg/s; Q(max) = 77 m(3)/s) and discharge in the third event (Q(max) = 127 m(3)/s). This pattern reflects a progressive depletion of metals and sulphate stored in the dry summer as soluble evaporitic salt minerals and concentrated pore fluids, with dilution by freshwater becoming increasingly dominant as the month progressed. Variations in relative concentrations were attributed to oxyhydroxysulphate Fe precipitation, to relative changes in the sources of acid mine drainage (e.g. salt minerals, mine tunnels, spoil heaps etc.) and to differences in the rainfall distributions along the catchment. The contaminant load carried by the river during October 2004 was enormous, totalling some 770 t of Fe, 420 t of Al, 100 t of Cu, 100 t of Zn and 71 t of Mn. This represents the largest recorded example of this flush-out process in an acid mine drainage setting. Approximately 1000 times more water and 1408 200 times more dissolved elements were carried by the river during October 2004 than during the dry, low-flow conditions of September 2004, highlighting the key role of flood Events in the annual pollutant transport budget of semi-arid and and systems and the need to monitor these events in detail in order to accurately quantify pollutant transport. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids.
Resumo:
In this paper, we present a distributed computing framework for problems characterized by a highly irregular search tree, whereby no reliable workload prediction is available. The framework is based on a peer-to-peer computing environment and dynamic load balancing. The system allows for dynamic resource aggregation, does not depend on any specific meta-computing middleware and is suitable for large-scale, multi-domain, heterogeneous environments, such as computational Grids. Dynamic load balancing policies based on global statistics are known to provide optimal load balancing performance, while randomized techniques provide high scalability. The proposed method combines both advantages and adopts distributed job-pools and a randomized polling technique. The framework has been successfully adopted in a parallel search algorithm for subgraph mining and evaluated on a molecular compounds dataset. The parallel application has shown good calability and close-to linear speedup in a distributed network of workstations.