933 resultados para Automatic theorem proving


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis concerns artificially intelligent natural language processing systems that are capable of learning the properties of lexical items (properties like verbal valency or inflectional class membership) autonomously while they are fulfilling their tasks for which they have been deployed in the first place. Many of these tasks require a deep analysis of language input, which can be characterized as a mapping of utterances in a given input C to a set S of linguistically motivated structures with the help of linguistic information encoded in a grammar G and a lexicon L: G + L + C → S (1) The idea that underlies intelligent lexical acquisition systems is to modify this schematic formula in such a way that the system is able to exploit the information encoded in S to create a new, improved version of the lexicon: G + L + S → L' (2) Moreover, the thesis claims that a system can only be considered intelligent if it does not just make maximum usage of the learning opportunities in C, but if it is also able to revise falsely acquired lexical knowledge. So, one of the central elements in this work is the formulation of a couple of criteria for intelligent lexical acquisition systems subsumed under one paradigm: the Learn-Alpha design rule. The thesis describes the design and quality of a prototype for such a system, whose acquisition components have been developed from scratch and built on top of one of the state-of-the-art Head-driven Phrase Structure Grammar (HPSG) processing systems. The quality of this prototype is investigated in a series of experiments, in which the system is fed with extracts of a large English corpus. While the idea of using machine-readable language input to automatically acquire lexical knowledge is not new, we are not aware of a system that fulfills Learn-Alpha and is able to deal with large corpora. To instance four major challenges of constructing such a system, it should be mentioned that a) the high number of possible structural descriptions caused by highly underspeci ed lexical entries demands for a parser with a very effective ambiguity management system, b) the automatic construction of concise lexical entries out of a bulk of observed lexical facts requires a special technique of data alignment, c) the reliability of these entries depends on the system's decision on whether it has seen 'enough' input and d) general properties of language might render some lexical features indeterminable if the system tries to acquire them with a too high precision. The cornerstone of this dissertation is the motivation and development of a general theory of automatic lexical acquisition that is applicable to every language and independent of any particular theory of grammar or lexicon. This work is divided into five chapters. The introductory chapter first contrasts three different and mutually incompatible approaches to (artificial) lexical acquisition: cue-based queries, head-lexicalized probabilistic context free grammars and learning by unification. Then the postulation of the Learn-Alpha design rule is presented. The second chapter outlines the theory that underlies Learn-Alpha and exposes all the related notions and concepts required for a proper understanding of artificial lexical acquisition. Chapter 3 develops the prototyped acquisition method, called ANALYZE-LEARN-REDUCE, a framework which implements Learn-Alpha. The fourth chapter presents the design and results of a bootstrapping experiment conducted on this prototype: lexeme detection, learning of verbal valency, categorization into nominal count/mass classes, selection of prepositions and sentential complements, among others. The thesis concludes with a review of the conclusions and motivation for further improvements as well as proposals for future research on the automatic induction of lexical features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

People tend to automatically mimic facial expressions of others. If clear evidence exists on the effect of non-verbal behavior (emotion faces) on automatic facial mimicry, little is known about the role of verbal behavior (emotion language) in triggering such effects. Whereas it is well-established that political affiliation modulates facial mimicry, no evidence exists on whether this modulation passes also through verbal means. This research addressed the role of verbal behavior in triggering automatic facial effects depending on whether verbal stimuli are attributed to leaders of different political parties. Study 1 investigated the role of interpersonal verbs, referring to positive and negative emotion expressions and encoding them at different levels of abstraction, in triggering corresponding facial muscle activation in a reader. Study 2 examined the role of verbs expressing positive and negative emotional behaviors of political leaders in modulating automatic facial effects depending on the matched or mismatched political affiliation of participants and politicians of left-and right-wing. Study 3 examined whether verbs expressing happiness displays of ingroup politicians induce a more sincere smile (Duchenne) pattern among readers of same political affiliation relative to happiness expressions of outgroup politicians. Results showed that verbs encoding facial actions at different levels of abstraction elicited differential facial muscle activity (Study 1). Furthermore, political affiliation significantly modulated facial activation triggered by emotion verbs as participants showed more congruent and enhanced facial activity towards ingroup politicians’ smiles and frowns compared to those of outgroup politicians (Study 2). Participants facially responded with a more sincere smile pattern towards verbs expressing smiles of ingroup compared to outgroup politicians (Study 3). Altogether, results showed that the role of political affiliation in modulating automatic facial effects passes also through verbal channels and is revealed at a fine-grained level by inducing quantitative and qualitative differences in automatic facial reactions of readers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dysfunction of Autonomic Nervous System (ANS) is a typical feature of chronic heart failure and other cardiovascular disease. As a simple non-invasive technology, heart rate variability (HRV) analysis provides reliable information on autonomic modulation of heart rate. The aim of this thesis was to research and develop automatic methods based on ANS assessment for evaluation of risk in cardiac patients. Several features selection and machine learning algorithms have been combined to achieve the goals. Automatic assessment of disease severity in Congestive Heart Failure (CHF) patients: a completely automatic method, based on long-term HRV was proposed in order to automatically assess the severity of CHF, achieving a sensitivity rate of 93% and a specificity rate of 64% in discriminating severe versus mild patients. Automatic identification of hypertensive patients at high risk of vascular events: a completely automatic system was proposed in order to identify hypertensive patients at higher risk to develop vascular events in the 12 months following the electrocardiographic recordings, achieving a sensitivity rate of 71% and a specificity rate of 86% in identifying high-risk subjects among hypertensive patients. Automatic identification of hypertensive patients with history of fall: it was explored whether an automatic identification of fallers among hypertensive patients based on HRV was feasible. The results obtained in this thesis could have implications both in clinical practice and in clinical research. The system has been designed and developed in order to be clinically feasible. Moreover, since 5-minute ECG recording is inexpensive, easy to assess, and non-invasive, future research will focus on the clinical applicability of the system as a screening tool in non-specialized ambulatories, in order to identify high-risk patients to be shortlisted for more complex investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La trasformata di Karhunen-Loève monodimensionale è la decomposizione di un processo stocastico del secondo ordine a parametrizzazione continua in coefficienti aleatori scorrelati. Nella presente dissertazione, la trasformata è ottenuta per via analitica, proiettando il processo, considerato in un intervallo di tempo limitato [a,b], su una base deterministica ottenuta dalle autofunzioni dell'operatore di Hilbert-Schmidt di covarianza corrispondenti ad autovalori positivi. Fondamentalmente l'idea del metodo è, dal primo, trovare gli autovalori positivi dell'operatore integrale di Hilbert-Schmidt, che ha in Kernel la funzione di covarianza del processo. Ad ogni tempo dell'intervallo, il processo è proiettato sulla base ortonormale dello span delle autofunzioni dell'operatore di Hilbert-Schmidt che corrispondono ad autovalori positivi. Tale procedura genera coefficienti aleatori che si rivelano variabili aleatorie centrate e scorrelate. L'espansione in serie che risulta dalla trasformata è una combinazione lineare numerabile di coefficienti aleatori di proiezione ed autofunzioni convergente in media quadratica al processo, uniformemente sull'intervallo temporale. Se inoltre il processo è Gaussiano, la convergenza è quasi sicuramente sullo spazio di probabilità (O,F,P). Esistono molte altre espansioni in serie di questo tipo, tuttavia la trasformata di Karhunen-Loève ha la peculiarità di essere ottimale rispetto all'errore totale in media quadratica che consegue al troncamento della serie. Questa caratteristica ha conferito a tale metodo ed alle sue generalizzazioni un notevole successo tra le discipline applicate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real living cell is a complex system governed by many process which are not yet fully understood: the process of cell differentiation is one of these. In this thesis work we make use of a cell differentiation model to develop gene regulatory networks (Boolean networks) with desired differentiation dynamics. To accomplish this task we have introduced techniques of automatic design and we have performed experiments using various differentiation trees. The results obtained have shown that the developed algorithms, except the Random algorithm, are able to generate Boolean networks with interesting differentiation dynamics. Moreover, we have presented some possible future applications and developments of the cell differentiation model in robotics and in medical research. Understanding the mechanisms involved in biological cells can gives us the possibility to explain some not yet understood dangerous disease, i.e the cancer. Le cellula è un sistema complesso governato da molti processi ancora non pienamente compresi: il differenziamento cellulare è uno di questi. In questa tesi utilizziamo un modello di differenziamento cellulare per sviluppare reti di regolazione genica (reti Booleane) con dinamiche di differenziamento desiderate. Per svolgere questo compito abbiamo introdotto tecniche di progettazione automatica e abbiamo eseguito esperimenti utilizzando vari alberi di differenziamento. I risultati ottenuti hanno mostrato che gli algoritmi sviluppati, eccetto l'algoritmo Random, sono in grado di poter generare reti Booleane con dinamiche di differenziamento interessanti. Inoltre, abbiamo presentato alcune possibili applicazioni e sviluppi futuri del modello di differenziamento in robotica e nella ricerca medica. Capire i meccanismi alla base del funzionamento cellulare può fornirci la possibilità di spiegare patologie ancora oggi non comprese, come il cancro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'applicazione di misure, derivanti dalla teoria dell'informazione, fornisce un valido strumento per quantificare alcune delle proprietà dei sistemi complessi. Le stesse misure possono essere utilizzate in robotica per favorire l'analisi e la sintesi di sistemi di controllo per robot. In questa tesi si è analizzata la correlazione tra alcune misure di complessità e la capacità dei robot di portare a termine, con successo, tre differenti task. I risultati ottenuti suggeriscono che tali misure di complessità rappresentano uno strumento promettente anche nel campo della robotica, ma che il loro utilizzo può diventare difficoltoso quando applicate a task compositi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite its importance, implant removal torque can be assessed at present only after implantation. This paper presents a new technique to help clinicians preoperatively evaluate implant stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Virtopsy project, a multi-disciplinary project that involves forensic science, diagnostic imaging, computer science, automation technology, telematics and biomechanics, aims to develop new techniques to improve the outcome of forensic investigations. This paper presents a new approach in the field of minimally invasive virtual autopsy for a versatile robotic system that is able to perform three-dimensional (3D) surface scans as well as post mortem image-guided soft tissue biopsies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarticular allograft is one possible treatment in wide surgical resections with large defects. Performing best osteoarticular allograft selection is of great relevance for optimal exploitation of the bone databank, good surgery outcome and patient’s recovery. Current approaches are, however, very time consuming hindering these points in practice. We present a validation study of a software able to perform automatic bone measurements used to automatically assess the distal femur sizes across a databank. 170 distal femur surfaces were reconstructed from CT data and measured manually using a size measure protocol taking into account the transepicondyler distance (A), anterior-posterior distance in medial condyle (B) and anterior-posterior distance in lateral condyle (C). Intra- and inter-observer studies were conducted and regarded as ground truth measurements. Manual and automatic measures were compared. For the automatic measurements, the correlation coefficients between observer one and automatic method, were of 0.99 for A measure and 0.96 for B and C measures. The average time needed to perform the measurements was of 16 h for both manual measurements, and of 3 min for the automatic method. Results demonstrate the high reliability and, most importantly, high repeatability of the proposed approach, and considerable speed-up on the planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Navigated ultrasound (US) imaging is used for the intra-operative acquisition of 3D image data during imageguided surgery. The presented approach includes the design of a compact and easy to use US calibration device and its integration into a software application for navigated liver surgery. User interaction during the calibration process is minimized through automatic detection of the calibration process followed by automatic image segmentation, calculation of the calibration transform and validation of the obtained result. This leads to a fast, interaction-free and fully automatic calibration procedure enabling intra-operative

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To measure surrogate markers of coagulation activation as well as of the systemic inflammatory response in patients undergoing primary elective coronary artery bypass grafting (CABG) using either the so-called Smart suction device or a continuous autotransfusion system (C.A.T.S.®).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.

Relevância:

20.00% 20.00%

Publicador: