904 resultados para Assisted Vaginal Hysterectomy
Resumo:
The electrical and communication performance of a 0.8-mu W UHF temperature telemeter designed for human vaginal placement is discussed; a solenoidal loop antenna was used, occupying a volume of 0.1 cm(3). In situ, measured power absorption was between 19-25 dB, resulting in an effective operating range of 10 m. Capacitive loading lowered the antenna's resonant frequency by 1.4% and there was a significant polarization change in the radiated output.
Resumo:
User induced errors are common when women repetitively employ conventional probe type thermometers to chart their basal body temperatures in an effort to indicate ovulation. An alternative technique employing a two-part telemetric thermometer is proposed, with low-power, SAWR-controlled UHF radio as the transmission medium. Worn overnight in the vagina, the 1 mu W erp telemetry transmitter sends pulse modulated data continuously to a microcontroller in a nearby receiver; a real time clock enables programmable sampling and storage of the subject's temperature to 0.1 degrees C resolution. Initial clinical results indicate an enhanced performance compared to oral and axillary temperature trends taken by a mercury-in-glass thermometer. Polar plots of both the isolated and body-worn telemetry transmitte are presented; body indced attenuations of up to 30 dB were measured.
Resumo:
A robust vaginal immune response is considered essential for an effective prophylactic vaccine that prevents transmission of HIV and other sexually acquired diseases. Considerable attention has recently focused on the potential of vaginally administered vaccines as a means to induce such local immunity. However, the potential for vaccination at this site remains in doubt as the vaginal mucosa is generally considered to have low immune inductive potential. In the current study, we explored for the first time the use of a quick release, freeze-dried, solid dosage system for practical vaginal administration of a protein antigen. These solid dosage forms overcome the common problem associated with leakage and poor retention of vaginally administered antigen solutions. Mice were immunized vaginally with H4A, an HIV gp41 envelope based recombinant protein, using quick release, freeze-dried solid rods, and the immune responses compared to a control group immunized via subcutaneous H4A injection. Vaginally immunized mice failed to elicit robust immune responses. Our detailed investigations, involving cytokine analysis, the stability of H4A in mouse cervicovaginal lavage, and elucidation of the state of H4A protein in the immediate-release dosage form, revealed that antigen instability in vaginal fluid, the state of the antigen in the dosage form, and the cytokine profile induced are all likely to have contributed to the observed lack of immunogenicity. These are important factors affecting vaginal immunization and provide a rational basis for explaining the typically poor and variable elicitation of immunity at this site, despite the presence of immune responsive cells within the vaginal mucosae. In future mucosal vaccine studies, a more explicit focus on antigen stability in the dosage form and the immune potential of available antigen-responsive cells is recommended. © 2012 Elsevier Ltd. All rights reserved.
Sustained Release of the CCR5 Inhibitors CMPD167 and Maraviroc from Vaginal Rings in Rhesus Macaques
Resumo:
Antiretroviral entry inhibitors are now being considered as vaginally administered microbicide candidates for prevention of sexual transmission of human immunodeficiency virus. Previous studies testing the entry inhibitors maraviroc and CMPD167 in aqueous gel formulations showed efficacy in the macaque challenge model, although protection was highly dependent on the time period between initial gel application and subsequent challenge. In this paper, we describe the sustained release of the entry inhibitors maraviroc and CMPD167 from matrix-type silicone elastomer vaginal rings both in vitro and in vivo. Both inhibitors were released continuously over 28 days from rings in vitro, at rates of 100-2500 µg/day. In 28-day pharmacokinetic studies in rhesus macaques, the compounds were measured in the vaginal fluid and vaginal tissue; steady state fluid concentrations were ~106 fold greater than IC50 values for SHIV-162P3 inhibition in macaque lymphocytes in vitro. Plasma concentrations for both compounds were very low. Pretreatment of macaques with Depo-Provera® (DP), as commonly used in macaque challenge studies, was shown to significantly modify the bio-distribution of the inhibitors, but not the overall amount released. Vaginal fluid and tissue concentrations were significantly decreased while plasma levels increased with DP pretreatment. These observations have implications for designing macaque challenge experiments, and also for ring performance during the human female menstrual cycle. Copyright © 2012, American Society for Microbiology. All Rights Reserved.
Resumo:
The present investigation deals with development and characteriza- tion of the liposomes-based freeze-dried rods for the vaginal delivery of gp140 antigen in mice. Positively charged, negatively charged and neutral liposomes were prepared and characterized for various parameters e.g. morphology, size, polydispersity index, zeta potential and antigen encapsulation efficiency. To further improve the efficacy of vaccine delivery, antigen encapsulated liposomes were formulated as polymer gel-based freeze-dried rods, which were then characterized for moisture content. The redispersibility of the liposomes-based freeze- dried rods was determined in simulated vaginal fluid and liposome gel was investigated for mucoadhesion. The developed liposome-based freeze-dried rods systems could offer potential as stable and practical dosage form for the mucosal immunization against HIV-1 infection.
Resumo:
The reaction of 1-butylpyrrolidine with dimethyl carbonate to yield the ionic liquid precursor, 1-butyl-1-methylpyrrolidinium methylcarbonate, has been investigated under microwave heating conditions and the reaction parameters optimised to achieve 100% yield of the pyrrolidinium salt with no by-products in under 1 h. The reactions of tributylamine, trioctylphosphine, and 1-butylimidazole with dimethyl carbonate under comparable conditions have also been evaluated, yielding the corresponding methylcarbonate salts which can be used as intermediates for the preparation of halide-free ionic liquids without generating any undesirable salt wastes.
Resumo:
Robust, active, anatase titania films, 250 nm thick, are deposited onto glass at low temperatures, i.e., 2.0 for the photocatalytic mineralization of stearic acid. These films are typically 6.9 times more active than a sample of commercial self-cleaning glass, comprising a 15 nm layer of fitania deposited by CVD, mainly because they are much thicker and, therefore, absorb more of the incident UV light. The most active of the films tested comprised particles of P25, but lacked any significant physical robustness. Similar results, but much more quickly obtained, were generated using a photocatalyst- sensitive ink, based on the redox dye, resazurin, Rz. All fitania films tested, including those produced by magnetrom sputtering exhibited photo-induced superhydrophilicity. The possible future application of PAR-DG-MS for producing very active photocatalytic films on substrates not renowned for their high temperature stabilities, such as plastics, is noted. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
A major goal in vaccine development is elimination of the ‘cold chain’, the transport and storage system for maintenance and distribution of the vaccine product. This is particularly pertinent to liquid formulation of vaccines. We have previously described the rod-insert vaginal ring (RiR) device, comprising an elastomeric body into which are inserted lyophilised, rod-shaped, solid drug dosage forms, and having potential for sustained mucosal delivery of biomacromolecules, such as HIV envelope protein-based vaccine candidates. Given the solid, lyophilised nature of these insert dosage forms, we hypothesised that antigen stability may be significantly increased compared with more conventional solubilised vaginal gel format. In this study, we prepared and tested vaginal ring devices fitted with lyophilised rod inserts containing the model antigen bovine serum albumin (BSA). Both the RiRs and the gels that were freeze-dried to prepare the inserts were evaluated for BSA stability using PAGE, turbidimetry, microbial load, MALDI-TOF and qualitative precipitate solubility measurements. When stored at 4 oC, but not when stored at 40 oC / 75% RH, the RiR formulation offered protection against structural and conformational changes to BSA. The insert also retained matrix integrity and release characteristics. The results demonstrate that lypophilised gels can provide relative protection against degradation at lower temperatures compared to semi-solid gels. The major mechanism of degradation at 40 oC / 75% RH was shown to be protein aggregation. Finally, in a preliminary study, we found that addition of trehalose to the formulation significantly reduces the rate of BSA degradation as compared to the original formulation when stored at 40 oC /75% RH. Establishing the mechanism of degradation, and finding that degradation is decelerated in the presence of trehalose, will help inform further development of RiRs specifically and polymer based freeze-dried systems in general.