944 resultados para Artificial lift method
Resumo:
Background The residue-wise contact order (RWCO) describes the sequence separations between the residues of interest and its contacting residues in a protein sequence. It is a new kind of one-dimensional protein structure that represents the extent of long-range contacts and is considered as a generalization of contact order. Together with secondary structure, accessible surface area, the B factor, and contact number, RWCO provides comprehensive and indispensable important information to reconstructing the protein three-dimensional structure from a set of one-dimensional structural properties. Accurately predicting RWCO values could have many important applications in protein three-dimensional structure prediction and protein folding rate prediction, and give deep insights into protein sequence-structure relationships. Results We developed a novel approach to predict residue-wise contact order values in proteins based on support vector regression (SVR), starting from primary amino acid sequences. We explored seven different sequence encoding schemes to examine their effects on the prediction performance, including local sequence in the form of PSI-BLAST profiles, local sequence plus amino acid composition, local sequence plus molecular weight, local sequence plus secondary structure predicted by PSIPRED, local sequence plus molecular weight and amino acid composition, local sequence plus molecular weight and predicted secondary structure, and local sequence plus molecular weight, amino acid composition and predicted secondary structure. When using local sequences with multiple sequence alignments in the form of PSI-BLAST profiles, we could predict the RWCO distribution with a Pearson correlation coefficient (CC) between the predicted and observed RWCO values of 0.55, and root mean square error (RMSE) of 0.82, based on a well-defined dataset with 680 protein sequences. Moreover, by incorporating global features such as molecular weight and amino acid composition we could further improve the prediction performance with the CC to 0.57 and an RMSE of 0.79. In addition, combining the predicted secondary structure by PSIPRED was found to significantly improve the prediction performance and could yield the best prediction accuracy with a CC of 0.60 and RMSE of 0.78, which provided at least comparable performance compared with the other existing methods. Conclusion The SVR method shows a prediction performance competitive with or at least comparable to the previously developed linear regression-based methods for predicting RWCO values. In contrast to support vector classification (SVC), SVR is very good at estimating the raw value profiles of the samples. The successful application of the SVR approach in this study reinforces the fact that support vector regression is a powerful tool in extracting the protein sequence-structure relationship and in estimating the protein structural profiles from amino acid sequences.
Resumo:
Characteristics of surveillance video generally include low resolution and poor quality due to environmental, storage and processing limitations. It is extremely difficult for computers and human operators to identify individuals from these videos. To overcome this problem, super-resolution can be used in conjunction with an automated face recognition system to enhance the spatial resolution of video frames containing the subject and narrow down the number of manual verifications performed by the human operator by presenting a list of most likely candidates from the database. As the super-resolution reconstruction process is ill-posed, visual artifacts are often generated as a result. These artifacts can be visually distracting to humans and/or affect machine recognition algorithms. While it is intuitive that higher resolution should lead to improved recognition accuracy, the effects of super-resolution and such artifacts on face recognition performance have not been systematically studied. This paper aims to address this gap while illustrating that super-resolution allows more accurate identification of individuals from low-resolution surveillance footage. The proposed optical flow-based super-resolution method is benchmarked against Baker et al.’s hallucination and Schultz et al.’s super-resolution techniques on images from the Terrascope and XM2VTS databases. Ground truth and interpolated images were also tested to provide a baseline for comparison. Results show that a suitable super-resolution system can improve the discriminability of surveillance video and enhance face recognition accuracy. The experiments also show that Schultz et al.’s method fails when dealing surveillance footage due to its assumption of rigid objects in the scene. The hallucination and optical flow-based methods performed comparably, with the optical flow-based method producing less visually distracting artifacts that interfered with human recognition.
Resumo:
Recently, many new applications in engineering and science are governed by a series of fractional partial differential equations (FPDEs). Unlike the normal partial differential equations (PDEs), the differential order in a FPDE is with a fractional order, which will lead to new challenges for numerical simulation, because most existing numerical simulation techniques are developed for the PDE with an integer differential order. The current dominant numerical method for FPDEs is Finite Difference Method (FDM), which is usually difficult to handle a complex problem domain, and also hard to use irregular nodal distribution. This paper aims to develop an implicit meshless approach based on the moving least squares (MLS) approximation for numerical simulation of fractional advection-diffusion equations (FADE), which is a typical FPDE. The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless strong-forms. The stability and convergence related to the time discretization of this approach are then discussed and theoretically proven. Several numerical examples with different problem domains and different nodal distributions are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling and simulation of the FADE.
Resumo:
In the multi-view approach to semisupervised learning, we choose one predictor from each of multiple hypothesis classes, and we co-regularize our choices by penalizing disagreement among the predictors on the unlabeled data. We examine the co-regularization method used in the co-regularized least squares (CoRLS) algorithm, in which the views are reproducing kernel Hilbert spaces (RKHS's), and the disagreement penalty is the average squared difference in predictions. The final predictor is the pointwise average of the predictors from each view. We call the set of predictors that can result from this procedure the co-regularized hypothesis class. Our main result is a tight bound on the Rademacher complexity of the co-regularized hypothesis class in terms of the kernel matrices of each RKHS. We find that the co-regularization reduces the Rademacher complexity by an amount that depends on the distance between the two views, as measured by a data dependent metric. We then use standard techniques to bound the gap between training error and test error for the CoRLS algorithm. Experimentally, we find that the amount of reduction in complexity introduced by co regularization correlates with the amount of improvement that co-regularization gives in the CoRLS algorithm.
Resumo:
The antiretroviral therapy (ART) program for People Living with HIV/AIDS (PLHIV) in Vietnam has been scaled up rapidly in recent years (from 50 clients in 2003 to almost 38,000 in 2009). ART success is highly dependent on the ability of the patients to fully adhere to the prescribed treatment regimen. Despite the remarkable extension of ART programs in Vietnam, HIV/AIDS program managers still have little reliable data on levels of ART adherence and factors that might promote or reduce adherence. Several previous studies in Vietnam estimated extremely high levels of ART adherence among their samples, although there are reasons to question the veracity of the conclusion that adherence is nearly perfect. Further, no study has quantitatively assessed the factors influencing ART adherence. In order to reduce these gaps, this study was designed to include several phases and used a multi-method approach to examine levels of ART non-adherence and its relationship to a range of demographic, clinical, social and psychological factors. The study began with an exploratory qualitative phase employing four focus group discussions and 30 in-depth interviews with PLHIV, peer educators, carers and health care providers (HCPs). Survey interviews were completed with 615 PLHIV in five rural and urban out-patient clinics in northern Vietnam using an Audio Computer Assisted Self-Interview (ACASI) and clinical records extraction. The survey instrument was carefully developed through a systematic procedure to ensure its reliability and validity. Cultural appropriateness was considered in the design and implementation of both the qualitative study and the cross sectional survey. The qualitative study uncovered several contrary perceptions between health care providers and HIV/AIDS patients regarding the true levels of ART adherence. Health care providers often stated that most of their patients closely adhered to their regimens, while PLHIV and their peers reported that “it is not easy” to do so. The quantitative survey findings supported the PLHIV and their peers’ point of view in the qualitative study, because non-adherence to ART was relatively common among the study sample. Using the ACASI technique, the estimated prevalence of onemonth non-adherence measured by the Visual Analogue Scale (VAS) was 24.9% and the prevalence of four-day not-on-time-adherence using the modified Adult AIDS Clinical Trials Group (AACTG) instrument was 29%. Observed agreement between the two measures was 84% and kappa coefficient was 0.60 (SE=0.04 and p<0.0001). The good agreement between the two measures in the current study is consistent with those found in previous research and provides evidence of cross-validation of the estimated adherence levels. The qualitative study was also valuable in suggesting important variables for the survey conceptual framework and instrument development. The survey confirmed significant correlations between two measures of ART adherence (i.e. dose adherence and time adherence) and many factors identified in the qualitative study, but failed to find evidence of significant correlations of some other factors and ART adherence. Non-adherence to ART was significantly associated with untreated depression, heavy alcohol use, illicit drug use, experiences with medication side-effects, chance health locus of control, low quality of information from HCPs, low satisfaction with received support and poor social connectedness. No multivariate association was observed between ART adherence and age, gender, education, duration of ART, the use of adherence aids, disclosure of ART, patients’ ability to initiate communication with HCPs or distance between clinic and patients’ residence. This is the largest study yet reported in Asia to examine non-adherence to ART and its possible determinants. The evidence strongly supports recent calls from other developing nations for HIV/AIDS services to provide screening, counseling and treatment for patients with depressive symptoms, heavy use of alcohol and substance use. Counseling should also address fatalistic beliefs about chance or luck determining health outcomes. The data suggest that adherence could be enhanced by regularly providing information on ART and assisting patients to maintain social connectedness with their family and the community. This study highlights the benefits of using a multi-method approach in examining complex barriers and facilitators of medication adherence. It also demonstrated the utility of the ACASI interview method to enhance open disclosure by people living with HIV/AIDS and thus, increase the veracity of self-reported data.
Resumo:
This paper reports the feasibility and methodological considerations of using the Short Message System Experience Sampling (SMS-ES) Method, which is an experience sampling research method developed to assist researchers to collect repeat measures of consumers’ affective experiences. The method combines SMS with web-based technology in a simple yet effective way. It is described using a practical implementation study that collected consumers’ emotions in response to using mobile phones in everyday situations. The method is further evaluated in terms of the quality of data collected in the study, as well as against the methodological considerations for experience sampling studies. These two evaluations suggest that the SMS-ES Method is both a valid and reliable approach for collecting consumers’ affective experiences. Moreover, the method can be applied across a range of for-profit and not-for-profit contexts where researchers want to capture repeated measures of consumers’ affective experiences occurring over a period of time. The benefits of the method are discussed to assist researchers who wish to apply the SMS-ES Method in their own research designs.
Resumo:
The stochastic simulation algorithm was introduced by Gillespie and in a different form by Kurtz. There have been many attempts at accelerating the algorithm without deviating from the behavior of the simulated system. The crux of the explicit τ-leaping procedure is the use of Poisson random variables to approximate the number of occurrences of each type of reaction event during a carefully selected time period, τ. This method is acceptable providing the leap condition, that no propensity function changes “significantly” during any time-step, is met. Using this method there is a possibility that species numbers can, artificially, become negative. Several recent papers have demonstrated methods that avoid this situation. One such method classifies, as critical, those reactions in danger of sending species populations negative. At most, one of these critical reactions is allowed to occur in the next time-step. We argue that the criticality of a reactant species and its dependent reaction channels should be related to the probability of the species number becoming negative. This way only reactions that, if fired, produce a high probability of driving a reactant population negative are labeled critical. The number of firings of more reaction channels can be approximated using Poisson random variables thus speeding up the simulation while maintaining the accuracy. In implementing this revised method of criticality selection we make use of the probability distribution from which the random variable describing the change in species number is drawn. We give several numerical examples to demonstrate the effectiveness of our new method.
Resumo:
We consider a stochastic regularization method for solving the backward Cauchy problem in Banach spaces. An order of convergence is obtained on sourcewise representative elements.