936 resultados para Antiferromagnetic resonance
Resumo:
The (1) H and C-13 NMR spectra are reported for Ru(4, 4'-dimethyl-2,2'-bipyridene)(2) (2,2'-bipyridine-4,4'-dicarboxylic acid) (PF6)(2) that can be used as a new electrochemiluminescent probe in immunoasssay and nucleic acid hybridization assay. Because of the effect ol:Ru atom ligands and complex steric configuration, it is difficult to attribute spectra of the title molecular, By using 2D (1) H-(1) H COSY and (1) H-C-13 HETCOR method, the proton and C-13 NMR spectra are assigned completely, which provides a satisfactory method to quantitative and qualitative, analysis of the title moleculer in the further study.
Resumo:
The H-1 and C-13 nuclear magnetic resonance(NMR) spectra are reported for bis(2, 2'-bipyridine)(2, 2'-bipyridine-,4,4'-dicarboxylic acid) ruthenium(II) hexafluoruphosphate that has been used as a tagged molecule of electrochemiluminescent immunoassay. Because of the effect of Ru atom on ligands, it is difficult to assign its NMR spectra. BS' means of two dimensional H-1-H-1 COSY and H-1-C-13 COSY techniques, the H-1 and C-13 NMR spectra of bis (2, 2'-bipylidine) (2, 2'-bipyridine-4, 4-dicarboxylic acid) ruthenium(II) hexafluorophosphate are assigned completely. This provides a basis for NMR characterization of the nerv similar tagged molecules.
Resumo:
The reaction of [Cp*RhCl2](2) 1 with dilithium 1,2-dicarba-closo-dodecaborane(12)-1,2-dithiolate (a) and -diselenolate (b) afforded the 16-electron rhodium(III) half-sandwich complexes Cp*Rh[E2C2(B10H10)] [E=S (3a), Se (3b)]. The 18-electron trimethylphosphane rhodium(III) half-sandwiches Cp*Rh(PMe3)[E2C2(B10H10)] 4a-c were prepared from the reaction of Cp*RhCl2(PMe3) 2 with the same dichalcogenolates, including the ditelluride (c). The complexes 4a,b could also be obtained from the reaction of 3a,b with trimethylphosphane. The molecular geometry of 4b was determined by X-ray structural analysis. The 16-electron complexes 3 an monomeric in solution as shown by multinuclear magnetic resonance (H-1-, B-11-, C-13-, P-31- Se-77-, Rh-103-, Te-125-NMR). also in comparison with the data for the trimethylphosphane analogues 4a-c and for 6a in which the rhodium bears the eta(5)-1,3-C5H3 Bu-t(2) ligand. The Rh-103 nuclear shielding is reduced by 831 ppm (3a) and 1114 ppm (3b) with respect to the 18-electron complexes 4a,b. Similarly, the Se-77 nuclear shielding in 3b is reduced by 676.4 ppm with respect to that in 4b. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Resonance electron capture mass spectrometry, in which an additional information coordinate, the energy of electron capture, is applied, has a high sensitivity and a high specificity. It is extensively used to study the structure elucidation, the mechanism of ion formation and the detection, identification and quantification of organic substances in mixture.
Resumo:
The H-1 and C-13 NMR spectra are reported for Ru(2,2'-bipyridine)(2)(4,4'-dimethyl-2,2'-bipyridine)(PF6)(2) that may be used as elechochemiluminescent species. Because of the effect of Ru atom on ligands and complex steric configuration, it is, difficult to attribute the spectra of the title molecular. By using 2D H-1-H-1 COSY and H-1-C-13 COSY methods, the proton and carbon-13 spectra are assigned completely. This also provides a basis for NMR characterization of the-similar new compounds.
Resumo:
H-1 and C-13 nuclear magnetic resonance (NMR) spectra of 2, 2'-bis(p-aminobenzoic ester)-1,1'-binaphthyl were assigned and confirmed using 2D H-1-H-1 COSY, C-13-H-1 HETCOR and C-13-H-1 long-range HETCOR methods. This provided a basis for NMR characterization of the similar compounds.
Resumo:
The ESR of PPy films doped with Co (W2O7)(6)(10-) and CuW12O406- ions were reported and discussed. Results show that heteropolyanions not only play the role of neutralizing electricity in the PPy film, but also interact with the PPy molecular chain to form some adducts. The adducts affect the electronic structure of the PPy film and are unstable at more positive or more negative potentials. Dysonian ESR lineshape was recorded for the dry PPy film with CuW12O406- for the first time.
Resumo:
We investigated the electron paramagnetic resonance (EPR) spectra of undoped, FeCl3- and iodine-doped poly(para-phenylene) (PPP) prepared by the method of Kovacic. EPR measurements are used to characterize electronic states relevant for carrier transport in doped PPP. We found a novel dependence of room temperature linewidth (DELTAH(pp)) and spin density (N(spin)) on the dopant concentrations for iodine-doped PPP, namely, DELTAH(pp) first decreased and increased, and then decreased and increased again with increasing iodine concentration in the iodine-doped PPP. The corresponding value of N(spin) first increased and decreased, and then increased and decreased again with increasing iodine concentration in PPP. However, the changes in DELTAH(pp) and N(spin) with FeCl3 concentration in FeCl3-doped PPP differ from those of iodine-doped PPP. We explain the different EPR properties in FeCl3-doped and iodine-doped PPP.
Resumo:
Thermally induced phase separation in the mixture of poly (methyl methacrylate) (PMMA) with poly(styrene-co-acrylonitite (SAN) has intern studied with pulsed nuclear magnetic resonance(NMR) in single spin-lattice retaxation time T-1 of the eornpatibl. mixture two T-1 corresponding to those of PM MA-rich and SAN-rich comairis. Meanwhile, both T-1 gradually changing with annealing time provides the direct evidence that the phase separation takes place with a decomposition mechanism. Diffusion coeffieient was to lac negative, indicating an uphal diffusion characteristics, The basic parameters governing its kinetics were estimated using NMR date which were in good agreement with those evaluated from time-resolved light scattering experiments for a 60/40(PMMA/SAN) mixture annealed at 180.0 degrees C.