989 resultados para Antarctic Ice Sheet
Resumo:
A high-resolution deuterium profile is now available along the entire European Project for Ice Coring in Antarctica Dome C ice core, extending this climate record back to marine isotope stage 20.2, ~800,000 years ago. Experiments performed with an atmospheric general circulation model including water isotopes support its temperature interpretation. We assessed the general correspondence between Dansgaard-Oeschger events and their smoothed Antarctic counterparts for this Dome C record, which reveals the presence of such features with similar amplitudes during previous glacial periods. We suggest that the interplay between obliquity and precession accounts for the variable intensity of interglacial periods in ice core records. Temperature was estimated after correction for sea-water isotopic composition (Bintanja et al, 2005) and for ice sheet elevation (Parrenin et al, 2007) on EDC3 age scale (Parrenin et al, 2007).
Resumo:
Understanding the role of atmospheric CO2 during past climate changes requires clear knowledge of how it varies in time relative to temperature. Antarctic ice cores preserve highly resolved records of atmospheric CO2 and Antarctic temperature for the past 800,000 years. Here we propose a revised relative age scale for the concentration of atmospheric CO2 and Antarctic temperature for the last deglacial warming, using data from five Antarctic ice cores. We infer the phasing between CO2 concentration and Antarctic temperature at four times when their trends change abruptly. We find no significant asynchrony between them, indicating that Antarctic temperature did not begin to rise hundreds of years before the concentration of atmospheric CO2, as has been suggested by earlier studies.
Resumo:
Pebbles (>10 mm) sampled from three drill sites on the continental rise west of the Antarctic Peninsula during Ocean Drilling Program Leg 178 were classified by shape and roundness. In addition, pebble lithology and surface texture were visually identified. To increase the pebble sample number to 331, three sites that were drilled 94 to 213 km from the continental shelf edge were integrated into the data set using magnetostratigraphy for core correlation. Pebbles were compared in three groups defined by the same stratigraphic intervals at each site: 3.1-2.2 Ma (late Pliocene), 2.2-0.76 Ma (late Pliocene-late Pleistocene), and 0.76 Ma to the Holocene. Pebble lithologies originate from sources on the Antarctic Peninsula margin. Most pebbles are metamorphic and sedimentary pebbles are rare (<6%), whereas mafic volcanic and intrusive igneous lithologies increase in abundance upsection. Pebbles from 3.1 to 0.76 Ma, plotted on sphericity-roundness diagrams, indicate original transport as basal and supraglacial/englacial debris. Pebbles are abundant and of diverse lithology. From 0.76 Ma to the present, the number of pebbles is low and their shape characteristics indicate they originated as basal debris. Observed changes in ice-rafted pebbles can be explained by growth of an ice sheet and inundation of the Antarctic Peninsula topography by ice ~0.76 Ma. Prior to this, outlet and valley glaciers transported debris at high levels within and at the base of the ice. The mass accumulation rate of sand fluctuates and includes rounded quartz grains. Ice-sheet growth may have been accompanied by overall cooling from subpolar to polar glacial regimes, which halted meltwater production and enhanced the growth of ice shelves, which consequently reduced sediment supply to icebergs.
Resumo:
Subglacial hydrology in East Antarctica is poorly understood, yet may be critical to the manner in which ice flows. Data from a new regional airborne geophysical survey (ICECAP) have transformed our understanding of the topography and glaciology associated with the 287,000 km**2 Aurora Subglacial Basin in East Antarctica. Using these data, in conjunction with numerical ice sheet modeling, we present a suite of analyses that demonstrate the potential of the 1000 km-long basin as a route for subglacial water drainage from the ice sheet interior to the ice sheet margin. We present results from our analysis of basal topography, bed roughness and radar power reflectance and from our modeling of ice sheet flow and basal ice temperatures. Although no clear-cut subglacial lakes are found within the Aurora Basin itself, dozens of lake-like reflectors are observed that, in conjunction with other results reported here, support the hypothesis that the basin acts as a pathway allowing discharge from subglacial lakes near the Dome C ice divide to reach the coast via the Totten Glacier.
Resumo:
Oligocene to Quaternary sediments were recovered from the Antarctic continental margin in the eastern Weddell Sea during ODP Leg 113 and Polarstern expedition ANT-VI. Clay mineral composition and grain size distribution patterns are useful for distinguishing sediments that have been transported by ocean currents from those that were ice-rafted. This, in turn, has assisted in providing insights about the changing late Paleogene to Neogene sedimentary environment as the cryosphere developed in Antarctica. During the middle Oligocene, increasing glacial conditions on the continent are indicated by the presence of glauconite sands, that are interpreted to have formed on the shelf and then transported down the continental slope by advancing glaciers or as a result of sea-level lowering. The dominance of illite and a relatively high content of chlorite suggest predominantly physical weathering conditions on the continent. The high content of biogenic opal from the late Miocene to the late Pliocene resulted from increased upwelling processes at the continental margin due to increased wind strength related to global cooling. Partial melting of the ice-sheet occurred during an early Pliocene climate optimum as is shown by an increasing supply of predominantly current-derived sediment with a low mean grain size and peak values of smectite. Primary productivity decreased at ~ 3 Ma due to the development of a permanent sea-ice cover close to the continent. Late Pleistocene sediments are characterized by planktonic foraminifers and biogenic opal, concentrated in distinct horizons reflecting climatic cycles. Isotopic analysis of AT. pachyderma produced a stratigraphy which resulted in a calculated sedimentation rate of 1 cm/k.y. during the Pleistocene. Primary productivity was highest during the last three interglacial maxima and decreased during glacial episodes as a result of increasing sea-ice coverage.
Resumo:
Calmette Bay within Marguerite Bay along the western side of the Antarctic Peninsula contains one of the most continuous flights of raised beaches described to date in Antarctica. Raised beaches extend to 40.8 m above sea level (masl) and are thought to reflect glacial isostatic adjustment due to the retreat of the Antarctic Peninsula Ice Sheet. Using optically stimulated luminescence (OSL), we dated quartz extracts from cobble surfaces buried in raised beaches at Calmette Bay. The beaches are separated into upper and lower beaches based on OSL ages, geomorphology, and sedimentary fabric. The two sets of beaches are separated by a prominent scarp. One of our OSL ages from the upper beaches dates to 9.3 thousand years ago (ka; as of 1950) consistent with previous extrapolation of sea-level data and the time of ice retreat from inner Marguerite Bay. However, four of the seven ages from the upper beaches date to the timing of glaciation. We interpret these ages to represent reworking of beaches deposited prior to the Last Glacial Maximum (LGM) by advancing and retreating LGM ice. Ages from the lower beaches record relative sea-level fall due to Holocene glacial-isostatic adjustment. We suggest a Holocene marine limit of 21.7 masl with an age of 5.5-7.3 ka based on OSL ages from Calmette Bay and other sea-level constraints in the area. A marine limit at 21.7 masl implies half as much relative sea-level change in Marguerite Bay during the Holocene as suggested by previous sea-level reconstructions. No evidence for a relative sea-level signature of neoglacial events, such as a decrease followed by an increase in RSL fall due to ice advance and retreat associated with the Little Ice Age, is found within Marguerite Bay indicating either: (1) no significant neoglacial advances occurred within Marguerite Bay; (2) rheological heterogeneity allows part of the Antarctic Peninsula (i.e. the South Shetland Islands) to respond to rapid ice mass changes while other regions are incapable of responding to short-lived ice advances; or (3) the magnitude of neoglacial events within Marguerite Bay is too small to resolve through relative sea-level reconstructions. Although the application of reconstructing sea-level histories using OSL-dated raised beach deposits provides a better understanding of the timing and nature of relative sea-level change in Marguerite Bay, we highlight possible problems associated with using raised beaches as sea-level indices due to post-depositional reworking by storm waves.
Resumo:
The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ~3.3 Ma, followed by a coastal sea surface temperature cooling of ~2.5°C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.
Resumo:
Variations in global ice volume and temperature over the Cenozoic era have been investigated with a set of one-dimensional (1-D) ice-sheet models. Simulations include three ice sheets representing glaciation in the Northern Hemisphere, i.e. in Eurasia, North America and Greenland, and two separate ice sheets for Antarctic glaciation. The continental mean Northern Hemisphere surface-air temperature has been derived through an inverse procedure from observed benthic d18O records. These data have yielded a mutually consistent and continuous record of temperature, global ice volume and benthic d18O over the past 35 Ma. The simple 1-D model shows good agreement with a comprehensive 3-D ice-sheet model for the past 3 Ma. On average, differences are only 1.0°C for temperature and 6.2 m for sea level. Most notably, over the 35 Ma period, the reconstructed ice volume-temperature sensitivity shows a transition from a climate controlled by Southern Hemisphere ice sheets to one controlled by Northern Hemisphere ice sheets. Although the transient behaviour is important, equilibrium experiments show that the relationship between temperature and sea level is linear and symmetric, providing limited evidence for hysteresis. Furthermore, the results show a good comparison with other simulations of Antarctic ice volume and observed sea level.
Resumo:
Large temperature variations on land, in the air, and at the ocean surface, and highly variable flux of ice-rafted debris (IRD) delivered to the North Atlantic Ocean show that rapid climate fluctuations took place during the last glacial period. These quasi-periodic, high-amplitude climate variations followed a sequence of events recognized as a rapid warming, followed by a phase of gradual cooling, and terminating with more rapid cooling and increased flux of IRD to the north Atlantic Ocean. Each cycle lasted ˜1500 years, and was followed by an almost identical sequence. These cycles are referred to as Dansgaard/Oechger cycles (D/O cycles), and approximately every fourth cycle culminated in a more pronounced cooling with a massive discharge of IRD into the north Atlantic Ocean over an interval of ˜500 years. These massive discharges of IRD are known as Heinrich layers. “Heinrich events” are thus characterized as a rapid transfer of IRD from a “source,” the bed of the Laurentide Ice Sheet (LIS), to a “sink,” the North Atlantic.
Resumo:
Elucidating the controls on the location and vigor of ice streams is crucial to understanding the processes that lead to fast disintegration of ice flows and ice sheets. In the former North American Laurentide ice sheet, ice stream occurrence appears to have been governed by topographic troughs or areas of soft-sediment geology. This paper reports robust evidence of a major paleo-ice stream over the northwestern Canadian Shield, an area previously assumed to be incompatible with fast ice flow because of the low relief and relatively hard bedrock. A coherent pattern of subglacial bedforms (drumlins and megascalle glacial lineations) demarcates the ice stream flow set, which exhibits a convergent onset zone, a narrow main trunk with abrupt lateral margins, and a lobate terminus. Variations in bedform elongation ratio within the flow set match theoretical expectations of ice velocity. In the center of the ice stream, extremely parallel megascalle glacial lineations tens of kilometers long with elongation ratios in excess of 40:1 attest to a single episode of rapid ice flow. We conclude that while bed properties are likely to be influential in determining the occurrence and vigor of ice streams, contrary to established views, widespread soft-bed geology is not an essential requirement for those ice streams without topographic control. We speculate that the ice stream acted as a release valve on ice-sheet mass balance and was initiated by the presence of a proglacial lake that destabilized the ice-sheet margin and propagated fast ice flow through a series of thermomechanical feedbacks involving ice flow and temperature.
Resumo:
During deglaciation of the North American Laurentide Ice Sheet large proglacial lakes developed in positions where proglacial drainage was impeded by the ice margin. For some of these lakes, it is known that subsequent drainage had an abrupt and widespread impact on North Atlantic Ocean circulation and climate, but less is known about the impact that the lakes exerted on ice sheet dynamics. This paper reports palaeogeographic reconstructions of the evolution of proglacial lakes during deglaciation across the northwestern Canadian Shield, covering an area in excess of 1,000,000 km(2) as the ice sheet retreated some 600 km. The interactions between proglacial lakes and ice sheet flow are explored, with a particular emphasis on whether the disposition of lakes may have influenced the location of the Dubawnt Lake ice stream. This ice stream falls outside the existing paradigm for ice streams in the Laurentide Ice Sheet because it did not operate over fined-grained till or lie in a topographic trough. Ice margin positions and a digital elevation model are utilised to predict the geometry and depth of proglacial takes impounded at the margin at 30-km increments during deglaciation. Palaeogeographic reconstructions match well with previous independent estimates of lake coverage inferred from field evidence, and results suggest that the development of a deep lake in the Thelon drainage basin may have been influential in initiating the ice stream by inducing calving, drawing down ice and triggering fast ice flow. This is the only location alongside this sector of the ice sheet where large (>3000 km(2)), deep lakes (similar to120 m) are impounded for a significant length of time and exactly matches the location of the ice stream. It is speculated that the commencement of calving at the ice sheet margin may have taken the system beyond a threshold and was sufficient to trigger rapid motion but that once initiated, calving processes and losses were insignificant to the functioning of the ice stream. It is thus concluded that proglacial lakes are likely to have been an important control on ice sheet dynamics during deglaciation of the Laurentide Ice Sheet. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Rapidly-flowing sectors of an ice sheet (ice streams) can play ail important role in abrupt climate change through tile delivery of icebergs and meltwater and tile Subsequent disruption of ocean thermohaline circulation (e.g., the North Atlantic's Heinrich events). Recently, several cores have been raised from the Arctic Ocean which document the existence of massive ice export events during tile Late Pleistocene and whose provenance has been linked to Source regions in the Canadian Arctic Archipelago. In this paper, satellite imagery is used to map glacial geomorphology in the vicinity of Victoria Island, Banks Island and Prince of Wales Island (Canadian Arctic) in order to reconstruct ice flow patterns in the highly complex glacial landscape. A total of 88 discrete flow-sets are mapped and of these, 13 exhibit the characteristic geomorphology of palaeo-ice streams (i.e., parallel patterns of large, highly elongated mega-scale glacial lineations forming a convergent flow pattern with abrupt lateral margins). Previous studies by other workers and cross-cutting relationships indicate that the majority of these ice streams are relatively young and operated during or immediately prior to deglaciation. Our new mapping, however, documents a large (> 700 km long; 110 km wide) and relatively old ice stream imprint centred in M'Clintock Channel and converging into Viscount Melville Sound. A trough mouth fan located on the continental shelf Suggests that it extended along M'Clure Strait and was grounded at tile shelf edge. The location of the M'Clure Strait Ice Stream exactly matches the Source area of 4 (possibly 5) major ice export events recorded in core PS 1230 raised from Fram Strait, the major ice exit for the Arctic Ocean. These ice export events occur at similar to 12.9, similar to 15.6, similar to 22 and 29.8 ka (C-14 yr BP) and we argue that they record vigorous episodes of activity of the M'Clure Strait Ice Stream. The timing of these events is remarkably similar to the North Atlantic's Heinrich events and we take this as evidence that the M'Clure Strait Ice Stream was also activated around the same time. This may hold important implications for tile cause of the North Atlantic's Heinrich events and hints at tile possibility of a pall-ice sheet response. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Ascertaining the location of palaeo-ice streams is crucial in order to produce accurate reconstructions of palaeo-ice sheets and examine interactions with the ocean-climate system. This paper reports evidence for a major ice stream in Amundsen Gulf, Canadian Arctic Archipelago. Mapping from satellite imagery (Landsat ETM+) and digital elevation models, including bathymetric data, is used to reconstruct flow-patterns on southwestern Victoria Island and the adjacent mainland (Nunavut and Northwest Territories). Several flow-sets indicative of ice streaming are found feeding into the marine trough and cross-cutting relationships between these flow-sets (and utilising previously published radiocarbon dates) reveal several phases of ice stream activity centred in Amundsen Gulf and Dolphin and Union Strait. A large erosional footprint on the continental shelf indicates that the ice stream (ca. 1000 km long and ca. 150 km wide) filled Amundsen Gulf, probably at the Last Glacial Maximum. Subsequent to this, the ice stream reorganised as the margin retreated back along the marine trough, eventually splitting into two separate low-gradient lobes in Prince Albert Sound and Dolphin and Union Strait. The location of this major ice stream holds important implications for ice sheet-ocean interactions and specifically, the development of Arctic Ocean ice shelves and the delivery of icebergs into the western Arctic Ocean during the late Pleistocene. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
A number of transient climate runs simulating the last 120kyr have been carried out using FAMOUS, a fast atmosphere-ocean general circulation model (AOGCM). This is the first time such experiments have been done with a full AOGCM, providing a three-dimensional simulation of both atmosphere and ocean over this period. Our simulation thus includes internally generated temporal variability over periods from days to millennia, and physical, detailed representations of important processes such as clouds and precipitation. Although the model is fast, computational restrictions mean that the rate of change of the forcings has been increased by a factor of 10, making each experiment 12kyr long. Atmospheric greenhouse gases (GHGs), northern hemisphere ice sheets and variations in solar radiation arising from changes in the Earth's orbit are treated as forcing factors, and are applied either separately or combined in different experiments. The long-term temperature changes on Antarctica match well with reconstructions derived from ice-core data, as does variability on timescales longer than 10 kyr. Last Glacial Maximum (LGM) cooling on Greenland is reasonably well simulated, although our simulations, which lack ice-sheet meltwater forcing, do not reproduce the abrupt, millennial scale climate shifts seen in northern hemisphere climate proxies or their slower southern hemisphere counterparts. The spatial pattern of sea surface cooling at the LGM matches proxy reconstructions reasonably well. There is significant anti-correlated variability in the strengths of the Atlantic Meridional Overturning Circulation (AMOC) and the Antarctic Circumpolar Current (ACC) on timescales greater than 10kyr in our experiments. We find that GHG forcing weakens the AMOC and strengthens the ACC, whilst the presence of northern hemisphere ice-sheets strengthens the AMOC and weakens the ACC. The structure of the AMOC at the LGM is found to be sensitive to the details of the ice-sheet reconstruction used. The precessional component of the orbital forcing induces ~20kyr oscillations in the AMOC and ACC, whose amplitude is mediated by changes in the eccentricity of the Earth's orbit. These forcing influences combine, to first order, in a linear fashion to produce the mean climate and ocean variability seen in the run with all forcings.