871 resultados para Anisotropic Analytical Algorithm
Resumo:
This thesis Entitled Internet Utilization and Academic Activities of Faculty Members in the Universities of kerala: an analytical study. Today, scientific research is throwing up new discoveries, inventions and vistas by the hour. We are witnessing a veritable knowledge explosion. It is important for members of university faculty members to keep abreast of it for giving up-t-date information to their students about the new development in the subject of their study. The internet is an invaluable tool for achieving it. Most of the universities have sufficient internet facility, but the accessibility to all the faculty members is not adequate. University Libraries also provides standard supplementary service in the internet area. This study indicates differential level of awareness and utilization of the internet services by the faculty members in the areas of teaching, research and publication. However the overall impression is that the awareness and utilization is inadequate. This point to the urgent need to devise programs and schemes to promote internet utilization among the faculty members. The suggestions indicate the key areas that deserve attention by policy makers and administrators. Thanks to the internet, every new development in every field of study is just a click away for faculty members, research scholars and students.
Resumo:
The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.
Resumo:
The elastic moduli of vortex crystals in anisotropic superconductors are frequently involved in the investigation of their phase diagram and transport properties. We provide a detailed analysis of the harmonic eigenvalues (normal modes) of the vortex lattice for general values of the magnetic field strength, going beyond the elastic continuum regime. The detailed behavior of these wave-vector-dependent eigenvalues within the Brillouin zone (BZ), is compared with several frequently used approximations that we also recalculate. Throughout the BZ, transverse modes are less costly than their longitudinal counterparts, and there is an angular dependence which becomes more marked close to the zone boundary. Based on these results, we propose an analytic correction to the nonlocal continuum formulas which fits quite well the numerical behavior of the eigenvalues in the London regime. We use this approximate expression to calculate thermal fluctuations and the full melting line (according to Lindeman's criterion) for various values of the anisotropy parameter.
Resumo:
The present thesis deals with the theoretical investigations on the effect of anisotropy on various properties of magnetically doped superconductors described by fihiba — Rusinov model.Chapter 1 is introductory. It contains a brief account of the current status of theory of superconductivity. In’ chapter 2 we give the formulation of the problem. Chapter 2.1 gives the BCS theory. The effect of magnetic impurities in superconductors as described by A8 theory is given in chapter 2.2A and that described by SR model is discussed in chapter 2.28. Chapter 2.2c deals with Kondo effect. In chapter 2.3 the anisotropy problem is reviewed. Our calculations, results and discussions are given in chapter 3. Chapter 3.1 deals with Josephson tunnel effect. In chapter 3.2 the thermodynamic critical field H62 is described. Chtpter 3.3 deals with the density of states. The ultrasonic attenuation coefficient and ufitlear spin relaxation are given in chapter 3.4 and 3.5 respectively. In chapter 3.6 we give the upper critical field calculations and chapter 3.7 deals with the response function. The Kondo effect is given in chapter 3.8. In chapter 4 we give the sumary of our results
Resumo:
Assembly job shop scheduling problem (AJSP) is one of the most complicated combinatorial optimization problem that involves simultaneously scheduling the processing and assembly operations of complex structured products. The problem becomes even more complicated if a combination of two or more optimization criteria is considered. This thesis addresses an assembly job shop scheduling problem with multiple objectives. The objectives considered are to simultaneously minimizing makespan and total tardiness. In this thesis, two approaches viz., weighted approach and Pareto approach are used for solving the problem. However, it is quite difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. Two metaheuristic techniques namely, genetic algorithm and tabu search are investigated in this thesis for solving the multiobjective assembly job shop scheduling problems. Three algorithms based on the two metaheuristic techniques for weighted approach and Pareto approach are proposed for the multi-objective assembly job shop scheduling problem (MOAJSP). A new pairing mechanism is developed for crossover operation in genetic algorithm which leads to improved solutions and faster convergence. The performances of the proposed algorithms are evaluated through a set of test problems and the results are reported. The results reveal that the proposed algorithms based on weighted approach are feasible and effective for solving MOAJSP instances according to the weight assigned to each objective criterion and the proposed algorithms based on Pareto approach are capable of producing a number of good Pareto optimal scheduling plans for MOAJSP instances.
Resumo:
As the application of polymeric complexes is enormous, there exists a continuing interest in the synthesis and characterization of these complexes. The synthetic and characterization parts are very important in an academic point of view. Further in an application point of view also polymeric ligands/complexes are gaining attention.The thesis is divided in to six chapters, in which the first chapter gives an introduction along with a brief review on polymeric ligands/ complexes. The second chapter explains the different procedure adopted for the whole work along with the details of the reagents/ instruments used. The third chapter gives a report of the detailed study regarding the synthesis and characterization of eighteen complexes. While the fourth chapter is a report of the ion removal studies using three polymeric ligands, the fifth chapter explains the development of a polymeric complex as ion selective electrode material for the fabrication of a CC ion selective electrode. The sixth chapter presents the summary and tables, figures and references are given separately at the end.
Resumo:
Decimal multiplication is an integral part of financial, commercial, and internet-based computations. A novel design for single digit decimal multiplication that reduces the critical path delay and area for an iterative multiplier is proposed in this research. The partial products are generated using single digit multipliers, and are accumulated based on a novel RPS algorithm. This design uses n single digit multipliers for an n × n multiplication. The latency for the multiplication of two n-digit Binary Coded Decimal (BCD) operands is (n + 1) cycles and a new multiplication can begin every n cycle. The accumulation of final partial products and the first iteration of partial product generation for next set of inputs are done simultaneously. This iterative decimal multiplier offers low latency and high throughput, and can be extended for decimal floating-point multiplication.
Resumo:
Decision trees are very powerful tools for classification in data mining tasks that involves different types of attributes. When coming to handling numeric data sets, usually they are converted first to categorical types and then classified using information gain concepts. Information gain is a very popular and useful concept which tells you, whether any benefit occurs after splitting with a given attribute as far as information content is concerned. But this process is computationally intensive for large data sets. Also popular decision tree algorithms like ID3 cannot handle numeric data sets. This paper proposes statistical variance as an alternative to information gain as well as statistical mean to split attributes in completely numerical data sets. The new algorithm has been proved to be competent with respect to its information gain counterpart C4.5 and competent with many existing decision tree algorithms against the standard UCI benchmarking datasets using the ANOVA test in statistics. The specific advantages of this proposed new algorithm are that it avoids the computational overhead of information gain computation for large data sets with many attributes, as well as it avoids the conversion to categorical data from huge numeric data sets which also is a time consuming task. So as a summary, huge numeric datasets can be directly submitted to this algorithm without any attribute mappings or information gain computations. It also blends the two closely related fields statistics and data mining
Resumo:
The present study is an attempt to highlight the problem of typographical errors in OPACS. The errors made while typing catalogue entries as well as importing bibliographical records from other libraries exist unnoticed by librarians resulting the non-retrieval of available records and affecting the quality of OPACs. This paper follows previous research on the topic mainly by Jeffrey Beall and Terry Ballard. The word “management” was chosen from the list of likely to be misspelled words identified by previous research. It was found that the word is wrongly entered in several forms in local, national and international OPACs justifying the observations of Ballard that typos occur in almost everywhere. Though there are lots of corrective measures proposed and are in use, the study asserts the fact that human effort is needed to get rid of the problem. The paper is also an invitation to the library professionals and system designers to construct a strategy to solve the issue
Resumo:
This work proposes a parallel genetic algorithm for compressing scanned document images. A fitness function is designed with Hausdorff distance which determines the terminating condition. The algorithm helps to locate the text lines. A greater compression ratio has achieved with lesser distortion
Resumo:
The present study is an attempt to highlight the problem of typographical errors in OPACS. The errors made while typing catalogue entries as well as importing bibliographical records from other libraries exist unnoticed by librarians resulting the non-retrieval of available records and affecting the quality of OPACs. This paper follows previous research on the topic mainly by Jeffrey Beall and Terry Ballard. The word “management” was chosen from the list of likely to be misspelled words identified by previous research. It was found that the word is wrongly entered in several forms in local, national and international OPACs justifying the observations of Ballard that typos occur in almost everywhere. Though there are lots of corrective measures proposed and are in use, the study asserts the fact that human effort is needed to get rid of the problem. The paper is also an invitation to the library professionals and system designers to construct a strategy to solve the issue
Resumo:
Reinforcement Learning (RL) refers to a class of learning algorithms in which learning system learns which action to take in different situations by using a scalar evaluation received from the environment on performing an action. RL has been successfully applied to many multi stage decision making problem (MDP) where in each stage the learning systems decides which action has to be taken. Economic Dispatch (ED) problem is an important scheduling problem in power systems, which decides the amount of generation to be allocated to each generating unit so that the total cost of generation is minimized without violating system constraints. In this paper we formulate economic dispatch problem as a multi stage decision making problem. In this paper, we also develop RL based algorithm to solve the ED problem. The performance of our algorithm is compared with other recent methods. The main advantage of our method is it can learn the schedule for all possible demands simultaneously.
Resumo:
Short term load forecasting is one of the key inputs to optimize the management of power system. Almost 60-65% of revenue expenditure of a distribution company is against power purchase. Cost of power depends on source of power. Hence any optimization strategy involves optimization in scheduling power from various sources. As the scheduling involves many technical and commercial considerations and constraints, the efficiency in scheduling depends on the accuracy of load forecast. Load forecasting is a topic much visited in research world and a number of papers using different techniques are already presented. The accuracy of forecast for the purpose of merit order dispatch decisions depends on the extent of the permissible variation in generation limits. For a system with low load factor, the peak and the off peak trough are prominent and the forecast should be able to identify these points to more accuracy rather than minimizing the error in the energy content. In this paper an attempt is made to apply Artificial Neural Network (ANN) with supervised learning based approach to make short term load forecasting for a power system with comparatively low load factor. Such power systems are usual in tropical areas with concentrated rainy season for a considerable period of the year
Resumo:
Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works
Resumo:
A Multi-Objective Antenna Placement Genetic Algorithm (MO-APGA) has been proposed for the synthesis of matched antenna arrays on complex platforms. The total number of antennas required, their position on the platform, location of loads, loading circuit parameters, decoupling and matching network topology, matching network parameters and feed network parameters are optimized simultaneously. The optimization goal was to provide a given minimum gain, specific gain discrimination between the main and back lobes and broadband performance. This algorithm is developed based on the non-dominated sorting genetic algorithm (NSGA-II) and Minimum Spanning Tree (MST) technique for producing diverse solutions when the number of objectives is increased beyond two. The proposed method is validated through the design of a wideband airborne SAR