914 resultados para Angle of rotation
Resumo:
The papers by Winser et al. [(1990) J. atmos. terr. Phys.52, 501] and Häggström and Collis [(1990) J. atmos. terr. Phys.52, 519] used plasma flows and ion temperatures, as measured by the EISCAT tristatic incoherent scatter radar, to investigate changes in the ion composition of the ionospheric F-layer at high latitudes, in response to increases in the speed of plasma convection. These studies reported that the ion composition rapidly changed from mainly O+ to almost completely (>90%) molecular ions, following rapid increases in ion drift speed by >1 km s−1. These changes appeared inconsisent with theoretical considerations of the ion chemistry, which could not account for the large fractions of molecular ions inferred from the obsevations. In this paper, we discuss two causes of this discrepancy. First, we reevaluate the theoretical calculations for chemical equilibrium and show that, if we correct the derived temperatures for the effect of the molecular ions, and if we employ more realistic dependences of the reaction rates on the ion temperature, the composition changes derived for the faster convection speeds can be explained. For the Winser et al. observations with the radar beam at an aspect angle of ϕ = 54.7° to the geomagnetic field, we now compute a change to 89% molecular ions in < 2 min, in response to the 3 km s−1 drift. This is broadly consistent with the observations. But for the two cases considered by Häggström and Collis, looking along the field line (ϕ = 0°), we compute the proportion of molecular ions to be only 4 and 16% for the observed plasma drifts of 1.2 and 1.6 km s−1, respectively. These computed proportions are much smaller than those derived experimentally (70 and 90%). We attribute the differences to the effects of non-Maxwellian, anisotropic ion velocity distribution functions. We also discuss the effect of ion composition changes on the various radar observations that report anisotropies of ion temperature.
Resumo:
Assessment is made of the effect of the assumed form for the ion velocity distribution function on estimates of three-dimensional ion temperature from one-dimensional observations. Incoherent scatter observations by the EISCAT radar at a variety of aspect angles are used to demonstrate features of ion temperature determination and to study the ion velocity distribution function. One form of the distribution function which has recently been widely used In the interpretation of EISCAT measurements, is found to be consistent with the data presented here, in that no deviation from a Maxwellian can be detected for observations along the magnetic field line and that the ion temperature and its anisotropy are accurately predicted. It is shown that theoretical predictions of the anisotropy by Monte Carlo computations are very accurate, the observed value being greater by only a few percent. It is also demonstrated for the case studied that errors of up to 93% are introduced into the ion temperature estimate if the anisotropy is neglected. Observations at an aspect angle of 54.7°, which are not subject to this error, have a much smaller uncertainty (less than 1%) due to the adopted form of the distribution of line-of-sight velocity.
Resumo:
We report the analysis of a uniform sample of 31 light curves of the nova-like variable UU Aqr with eclipse-mapping techniques. The data were combined to derive eclipse maps of the average steady-light component, the long-term brightness changes, and the low- and high-frequency flickering components. The long-term variability responsible for the ""low-brightness`` and ""high-brightness`` states is explained in terms of the response of a viscous disk to changes of 20%-50% in the mass transfer rate from the donor star. Low- and high-frequency flickering maps are dominated by emission from two asymmetric arcs reminiscent of those seen in the outbursting dwarf nova IP Peg, and they are similarly interpreted as manifestations of a tidally induced spiral shock wave in the outer regions of a large accretion disk. The asymmetric arcs are also seen in the map of the steady light aside from the broad brightness distribution of a roughly steady-state disk. The arcs account for 25% of the steady-light flux and are a long-lasting feature in the accretion disk of UU Aqr. We infer an opening angle of 10 degrees +/- 3 degrees for the spiral arcs. The results suggest that the flickering in UU Aqr is caused by turbulence generated after the collision of disk gas with the density-enhanced spiral wave in the accretion disk.
Resumo:
It is believed that eta Carinae is actually a massive binary system, with the wind-wind interaction responsible for the strong X-ray emission. Although the overall shape of the X-ray light curve can be explained by the high eccentricity of the binary orbit, other features like the asymmetry near periastron passage and the short quasi-periodic oscillations seen at those epochs have not yet been accounted for. In this paper we explain these features assuming that the rotation axis of eta Carinae is not perpendicular to the orbital plane of the binary system. As a consequence, the companion star will face eta Carinae on the orbital plane at different latitudes for different orbital phases and, since both the mass-loss rate and the wind velocity are latitude dependent, they would produce the observed asymmetries in the X-ray flux. We were able to reproduce the main features of the X-ray light curve assuming that the rotation axis of eta Carinae forms an angle of 29 degrees +/- 4 degrees with the axis of the binary orbit. We also explained the short quasi-periodic oscillations by assuming nutation of the rotation axis, with an amplitude of about 5 degrees and a period of about 22 days. The nutation parameters, as well as the precession of the apsis, with a period of about 274 years, are consistent with what is expected from the torques induced by the companion star.
Resumo:
During the past decade, several observational and theoretical works have provided evidence of the binary nature of eta Carinae. Nevertheless, there is still no direct determination of the orbital parameters, and the different current models give contradictory results. The orbit is, in general, assumed to coincide with the Homunculus equator although the observations are not conclusive. Among all systems, eta Car has the advantage that it is possible to observe both the direct emission of line transitions in the central source and its reflection by the Homunculus, which is dependent on the orbital inclination. In this work, we studied the orbital phase-dependent hydrogen Paschen spectra reflected by the south-east lobe of the Homunculus to constrain the orbital parameters of eta Car and determine its inclination with respect to the Homunculus axis. Assuming that the emission excess originates in the wind-wind shock region, we were able to model the latitude dependence of the spectral line profiles. For the first time, we were able to estimate the orbital inclination of eta Car with respect to the observer and to the Homunculus axis. The best fit occurs for an orbital inclination to the line of sight of i similar to 60 degrees +/- 10 degrees, and i* similar to 35 degrees +/- 10 degrees with respect to the Homunculus axis, indicating that the angular momenta of the central object and the orbit are not aligned. We were also able to fix the phase angle of conjunction as similar to -40 degrees, showing that periastron passage occurs shortly after conjunction.
Resumo:
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h(3) and h(4)) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps. Here we present data for five nearby early-type galaxies to similar to three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.
Resumo:
We describe the mating behavior in the spermatheca-lacking theraphosid species Sickius longibulbi Soares & Camargo 1948. The behavior in captivity of nine pairs of S. longibulbi was videotaped and analyzed. The matting of this species presented an uncommon theraphosid pattern. There is little in the way of overt courtship by the male, the primary behavior seen being the male`s use of legs I and II to touch the female`s first pairs of legs and her chelicerae. Sometimes the male clasped one of the female`s first pairs of legs, bringing her close to him. While the female raised her body, the male clasped her fangs and held her tightly with his legs III wrapped around her prosoma. The male seemed to try to knock the female down, pushing her entire body until she lay on her dorsum. In this phase we observed the male biting the female on the sternum or on the leg joints. When the female fell, the male attempted to position himself at an angle of 90 degrees from the female. These movements appear to demand a lot of energy, particularly because the female is not passive during the mating. Our findings suggest that copulating in this position is, for the male, more successful than adopting other positions because it allows his extremely long palpal bulbs to deposit more sperm in the female oviduct where - since she lacks spermathecae - she retains the sperm. We suggest that the further he reaches into the oviduct, the greater the chance that he will fertilize the female`s eggs.
Resumo:
We have formed and characterized polycrystalline diamond films with surfaces having hydrogen terminations, oxygen terminations, or fluorine terminations, using a small, simple and novel plasma gun to bombard the diamond surface, formed by plasma assisted CVD in a prior step, with ions of the wanted terminating species. The potential differences between surface regions with different terminations were measured by Kelvin Force Microscopy (KFM). The highest potential occurred for oxygen termination regions and the lowest for fluorine. The potential difference between regions with oxygen terminations and hydrogen terminations was about 80 mV, and between regions with hydrogen terminations and fluorine terminations about 150 mV. Regions with different terminations were identified and imaged using the secondary electron signal provided by scanning electron microscopy (SEM). since this signal presents contrast for surfaces with different electrical properties. The wettability of the surfaces with different terminations was evaluated, measuring contact angles. The sample with oxygen termination was the most hydrophilic, with a contact angle of 75 degrees. hydrogen-terminated regions with 83 degrees, and fluorine regions 93 degrees, the most hydrophobic sample. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The gravitational properties of a straight cosmic string are studied in the linear approximation of higher-derivative gravity. These properties are shown to be very different from those found using linearized Einstein gravity: there exists a short range gravitational (anti-gravitational) force in the nonrelativistic limit; in addition, the derection angle of a light ray moving in a plane orthogonal to the string depends on the impact parameter.
Resumo:
Quantum chemical calculations were carried out to explain the observed shifts in the absorption spectrum of different azo-aromatic compounds due to changes in the dihedral angle of the azo-group. Our results reveal that the pi-pi* transition presents a hypsochromic shift and an oscillator strength drop upon increase of the dihedral angle. Nevertheless, the pi-pi* transition exhibits the opposite behavior. This effect is attributed to the reduction in the pi-electron conjugation length of the molecule. Experimentally, we performed temperature dependence measurements of the linear absorption spectrum. Both the theoretical and experimental results demonstrate that small energy changes are mirrored in the electronic transitions of conjugated linear molecules. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper the large-scale mass transport mechanism is used to microstructure azopolymeric films, aiming at controllable hydrophobic surfaces. Using an Ar(+) laser with intensity of 70 mW/cm(2), we produced egg-crate-like surfaces with periods from 1.0 to 3.5 mu m that present distinct wetting properties. The static contact angle of water was measured on the microstructured surfaces, and the results revealed an increase of approximately 9 degrees for a surface pattern period of 2 mu m. Our results indicate the use of the microstructuring method described here for the fabrication of devices with controllable hydrophobicity.
Resumo:
Background Along the internal carotid artery (ICA), atherosclerotic plaques are often located in its cavernous sinus (parasellar) segments (pICA). Studies indicate that the incidence of pre-atherosclerotic lesions is linked with the complexity of the pICA; however, the pICA shape was never objectively characterized. Our study aims at providing objective mathematical characterizations of the pICA shape. Methods and results Three-dimensional (3D) computer models, reconstructed from contrast enhanced computed tomography (CT) data of 30 randomly selected patients (60 pICAs) were analyzed with modern visualization software and new mathematical algorithms. As objective measures for the pICA shape complexity, we provide calculations of curvature energy, torsion energy, and total complexity of 3D skeletons of the pICA lumen. We further measured the posterior knee of the so-called ""carotid siphon"" with a virtual goniometer and performed correlations between the objective mathematical calculations and the subjective angle measurements. Conclusions Firstly, our study provides mathematical characterizations of the pICA shape, which can serve as objective reference data for analyzing connections between pICA shape complexity and vascular diseases. Secondly, we provide an objective method for creating Such data. Thirdly, we evaluate the usefulness of subjective goniometric measurements of the angle of the posterior knee of the carotid siphon.
Resumo:
The reconstruction of Extensive Air Showers (EAS) observed by particle detectors at the ground is based on the characteristics of observables like the lateral particle density and the arrival times. The lateral densities, inferred for different EAS components from detector data, are usually parameterised by applying various lateral distribution functions (LDFs). The LDFs are used in turn for evaluating quantities like the total number of particles or the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the lateral particle density from this assumption arising from various reasons are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located at the Karlsruhe Institute of Technology (Campus North), Germany. The lateral distributions of charged particles are deduced from the basic information provided by the Grande scintillators - the energy deposits - first in the observation plane, then in the intrinsic shower plane. In all steps azimuthal dependences should be taken into account. As the energy deposit in the scintillators is dependent on the angles of incidence of the particles, azimuthal dependences are already involved in the first step: the conversion from the energy deposits to the charged particle density. This is done by using the Lateral Energy Correction Function (LECF) that evaluates the mean energy deposited by a charged particle taking into account the contribution of other particles (e.g. photons) to the energy deposit. By using a very fast procedure for the evaluation of the energy deposited by various particles we prepared realistic LECFs depending on the angle of incidence of the shower and on the radial and azimuthal coordinates of the location of the detector. Mapping the lateral density from the observation plane onto the intrinsic shower plane does not remove the azimuthal dependences arising from geometric and attenuation effects, in particular for inclined showers. Realistic procedures for applying correction factors are developed. Specific examples of the bias due to neglecting the azimuthal asymmetries in the conversion from the energy deposit in the Grande detectors to the lateral density of charged particles in the intrinsic shower plane are given. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Structural, energetic, and vibrational properties of new molecular species, HSeF and HFSe, the associated transition state, and dissociation fragments are investigated using a state-of-the-art theoretical approach, CCSD(T)/CBS. HSeF is a normal covalently bonded molecule 38.98 kcal mol (1) more stable than the complex HF-Se, which shows an unusual structure with a central fluorine atom and a bond angle of 101.8 degrees.A barrier (Delta G(#)) of 49.01 kcal mol (1) separates the two species. Vibrational frequencies are also quite distinct. Heats of formation are evaluated for the diatomic fragments and HSeF. Final Delta(f)H values depend on the experimental accuracy of those of Se(g) and H(2)Se. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The electrocatalytic oxidation of ascorbate on a ruthenium oxide hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated at pH 6.9 by using rotating disc electrode (RDE) voltammetry. The influence of the systematic variation of rotation rate, film thickness, ascorbate concentration and the electrode potential indicated that the rate of cross-chemical reaction between Ru(III) centres immobilized into the film and ascorbate controls the overall process. The kinetic regime may be classified as a Sk `` mechanism and the second order rate constant for the surface electrocatalytic reaction was found to be 1.56 x 10(-3) mol(-1) L-1 s(-1) cm. A carbon fibre microelectrode modified with the RuOHCF film was successfully used as an amperometric sensor to monitor the ascorbate diffusion in a simulated microenvironment experiment. (C) 2008 Elsevier B.V. All rights reserved.