993 resultados para Analytic key


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron microscopy (EM) has advanced in an exponential way since the first transmission electron microscope (TEM) was built in the 1930’s. The urge to ‘see’ things is an essential part of human nature (talk of ‘seeing is believing’) and apart from scanning tunnel microscopes which give information about the surface, EM is the only imaging technology capable of really visualising atomic structures in depth down to single atoms. With the development of nanotechnology the demand to image and analyse small things has become even greater and electron microscopes have found their way from highly delicate and sophisticated research grade instruments to key-turn and even bench-top instruments for everyday use in every materials research lab on the planet. The semiconductor industry is as dependent on the use of EM as life sciences and pharmaceutical industry. With this generalisation of use for imaging, the need to deploy advanced uses of EM has become more and more apparent. The combination of several coinciding beams (electron, ion and even light) to create DualBeam or TripleBeam instruments for instance enhances the usefulness from pure imaging to manipulating on the nanoscale. And when it comes to the analytic power of EM with the many ways the highly energetic electrons and ions interact with the matter in the specimen there is a plethora of niches which evolved during the last two decades, specialising in every kind of analysis that can be thought of and combined with EM. In the course of this study the emphasis was placed on the application of these advanced analytical EM techniques in the context of multiscale and multimodal microscopy – multiscale meaning across length scales from micrometres or larger to nanometres, multimodal meaning numerous techniques applied to the same sample volume in a correlative manner. In order to demonstrate the breadth and potential of the multiscale and multimodal concept an integration of it was attempted in two areas: I) Biocompatible materials using polycrystalline stainless steel and II) Semiconductors using thin multiferroic films. I) The motivation to use stainless steel (316L medical grade) comes from the potential modulation of endothelial cell growth which can have a big impact on the improvement of cardio-vascular stents – which are mainly made of 316L – through nano-texturing of the stent surface by focused ion beam (FIB) lithography. Patterning with FIB has never been reported before in connection with stents and cell growth and in order to gain a better understanding of the beam-substrate interaction during patterning a correlative microscopy approach was used to illuminate the patterning process from many possible angles. Electron backscattering diffraction (EBSD) was used to analyse the crystallographic structure, FIB was used for the patterning and simultaneously visualising the crystal structure as part of the monitoring process, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to analyse the topography and the final step being 3D visualisation through serial FIB/SEM sectioning. II) The motivation for the use of thin multiferroic films stems from the ever-growing demand for increased data storage at lesser and lesser energy consumption. The Aurivillius phase material used in this study has a high potential in this area. Yet it is necessary to show clearly that the film is really multiferroic and no second phase inclusions are present even at very low concentrations – ~0.1vol% could already be problematic. Thus, in this study a technique was developed to analyse ultra-low density inclusions in thin multiferroic films down to concentrations of 0.01%. The goal achieved was a complete structural and compositional analysis of the films which required identification of second phase inclusions (through elemental analysis EDX(Energy Dispersive X-ray)), localise them (employing 72 hour EDX mapping in the SEM), isolate them for the TEM (using FIB) and give an upper confidence limit of 99.5% to the influence of the inclusions on the magnetic behaviour of the main phase (statistical analysis).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this short paper, we have gone through some key results of monetary policy research applied for the Vietnamese economy, over the past 20 years after Doi Moi, together with a few caveats when putting these results in use. We look at different research themes, and suggest that future research make better and more diverse choice of analytic framework, and also put macro and micro-setting connection at work, which appear to likely bring about better and more insightful results for the monetary economics literature in Vietnam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed an alternative approach to optical design which operates in the analytical domain so that an optical designer works directly with rays as analytical functions of system parameters rather than as discretely sampled polylines. This is made possible by a generalization of the proximate ray tracing technique which obtains the analytical dependence of the rays at the image surface (and ray path lengths at the exit pupil) on each system parameter. The resulting method provides an alternative direction from which to approach system optimization and supplies information which is not typically available to the system designer. In addition, we have further expanded the procedure to allow asymmetric systems and arbitrary order of approximation, and have illustrated the performance of the method through three lens design examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic metamaterials are artificially structured media typically composed of arrays of resonant electromagnetic circuits, the dimension and spacing of which are considerably smaller than the free-space wavelengths of operation. The constitutive parameters for metamaterials, which can be obtained using full-wave simulations in conjunction with numerical retrieval algorithms, exhibit artifacts related to the finite size of the metamaterial cell relative to the wavelength. Liu showed that the complicated, frequency-dependent forms of the constitutive parameters can be described by a set of relatively simple analytical expressions. These expressions provide useful insight and can serve as the basis for more intelligent interpolation or optimization schemes. Here, we show that the same analytical expressions can be obtained using a transfer-matrix formalism applied to a one-dimensional periodic array of thin, resonant, dielectric, or magnetic sheets. The transfer-matrix formalism breaks down, however, when both electric and magnetic responses are present in the same unit cell, as it neglects the magnetoelectric coupling between unit cells. We show that an alternative analytical approach based on the same physical model must be applied for such structures. Furthermore, in addition to the intercell coupling, electric and magnetic resonators within a unit cell may also exhibit magnetoelectric coupling. For such cells, we find an analytical expression for the effective index, which displays markedly characteristic dispersion features that depend on the strength of the coupling coefficient. We illustrate the applicability of the derived expressions by comparing to full-wave simulations on magnetoelectric unit cells. We conclude that the design of metamaterials with tailored simultaneous electric and magnetic response-such as negative index materials-will generally be complicated by potentially unwanted magnetoelectric coupling. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ganglioside biosynthesis occurs through a multi-enzymatic pathway which at the lactosylceramide step is branched into several biosynthetic series. Lc3 synthase utilizes a variety of galactose-terminated glycolipids as acceptors by establishing a glycosidic bond in the beta-1,3-linkage to GlcNaAc to extend the lacto- and neolacto-series gangliosides. In order to examine the lacto-series ganglioside functions in mice, we used gene knockout technology to generate Lc3 synthase gene B3gnt5-deficient mice by two different strategies and compared the phenotypes of the two null mouse groups with each other and with their wild-type counterparts. RESULTS: B3gnt5 gene knockout mutant mice appeared normal in the embryonic stage and, if they survived delivery, remained normal during early life. However, about 9% developed early-stage growth retardation, 11% died postnatally in less than 2 months, and adults tended to die in 5-15 months, demonstrating splenomegaly and notably enlarged lymph nodes. Without lacto-neolacto series gangliosides, both homozygous and heterozygous mice gradually displayed fur loss or obesity, and breeding mice demonstrated reproductive defects. Furthermore, B3gnt5 gene knockout disrupted the functional integrity of B cells, as manifested by a decrease in B-cell numbers in the spleen, germinal center disappearance, and less efficiency to proliferate in hybridoma fusion. CONCLUSIONS: These novel results demonstrate unequivocally that lacto-neolacto series gangliosides are essential to multiple physiological functions, especially the control of reproductive output, and spleen B-cell abnormality. We also report the generation of anti-IgG response against the lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop an analytic framework for the analysis of robustness in social-ecological systems (SESs) over time. We argue that social robustness is affected by the disturbances that communities face and the way they respond to them. Using Ostrom's ontological framework for SESs, we classify the major factors influencing the disturbances and responses faced by five Indiana intentional communities over a 15-year time frame. Our empirical results indicate that operational and collective-choice rules, leadership and entrepreneurship, monitoring and sanctioning, economic values, number of users, and norms/social capital are key variables that need to be at the core of future theoretical work on robustness of self-organized systems. © 2010 by the author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Autobiographical memories of trauma victims are often described as disturbed in two ways. First, the trauma is frequently re-experienced in the form of involuntary, intrusive recollections. Second, the trauma is difficult to recall voluntarily (strategically); important parts may be totally or partially inaccessible-a feature known as dissociative amnesia. These characteristics are often mentioned by PTSD researchers and are included as PTSD symptoms in the DSM-IV-TR (American Psychiatric Association, 2000). In contrast, we show that both involuntary and voluntary recall are enhanced by emotional stress during encoding. We also show that the PTSD symptom in the diagnosis addressing dissociative amnesia, trouble remembering important aspects of the trauma is less well correlated with the remaining PTSD symptoms than the conceptual reversal of having trouble forgetting important aspects of the trauma. Our findings contradict key assumptions that have shaped PTSD research over the last 40 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Centrality of Event Scale (CES) measures the extent to which a traumatic memory forms a central component of personnal identity, a turning point in the life story and a reference point for everyday inferences. In two studies, we show that the CES is positively correlated with severity of PTSD symptoms, even when controlling for measures of anxiety, depression, dissociation and self-consciousness. The findings contradict the widespread view that poor integration of the traumatic memory into one's life story is a main cause of PTSD symptoms. Instead, enhanced integration appears to be a key issue. Copyright © 2006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Clear recommendations on how to guide patients with cancer on home parenteral nutrition (HPN) are lacking as the use of HPN in this population remains a controversial issue. Therefore, the aims of this study were to rank treatment recommendations and main outcome indicators to ensure high-quality care and to indicate differences in care concerning benign versus malignant patients. Methods: Treatment recommendations, identified from published guidelines, were used as a starting point for a two-round Delphi approach. Comments and additional interventions proposed in the first round were reevaluated in the second round. Ordinal logistic regression with SPSS 2.0 was used to identify differences in care concerning benign versus malignant patients. Results: Twenty-seven experts from five European countries completed two Delphi rounds. After the second Delphi round, the top three most important outcome indicators were (1) quality of life (QoL), (2) incidence of hospital readmission and (3) incidence of catheter-related infections. Forty-two interventions were considered as important for quality of care (28/42 based on published guidelines; 14/42 newly suggested by Delphi panel). The topics 'Liver disease' and 'Metabolic bone disease' were considered less important for cancer patients, together with use of infusion pumps (p = 0.004) and monitoring of vitamins and trace elements (p = 0.000). Monitoring of QoL is considered more important for cancer patients (p = 0.03). Conclusion: Using a two-round Delphi approach, we developed a minimal set of 42 interventions that may be used to determine quality of care in HPN patients with malignancies. This set of interventions differs from a similar set developed for benign patients. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the analysis of industrial processes, there is an increasing emphasis on systems governed by interacting continuum phenomena. Mathematical models of such multi-physics processes can only be achieved for practical simulations through computational solution procedures—computational mechanics. Examples of such multi-physics systems in the context of metals processing are used to explore some of the key issues. Finite-volume methods on unstructured meshes are proposed as a means to achieve efficient rapid solutions to such systems. Issues associated with the software design, the exploitation of high performance computers, and the concept of the virtual computational-mechanics modelling laboratory are also addressed in this context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational analysis software is now widely accepted as a key industrial tool for plant design and process analysis. This is due in part to increased accuracy in the models, larger and faster computer systems and better graphical interfaces that allow easy use of the technology by engineers. The use of computational modelling to test new ideas and analyse current processes helps to take the guesswork out of industrial process design and offers attractive cost savings. An overview of computer-based modelling techniques as applied to the materials processing industry is presented and examples of their application are provided in the contexts of the mixing and refining of lead bullion and the manufacture of lead ingots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key Terms in Second Language Acquisition includes definitions of key terms within second language acquisition, and also provides accessible summaries of the key issues within this complex area of study. The final section presents a list of key readings in second language acquisition that signposts the reader towards classic articles and also provides a springboard to further study.