882 resultados para Amory family (Hugh Amory, b. 1605)
Resumo:
Objective. NKT cells have diverse immune regulatory functions including activation of cells involved in Th1- and Th2-type immune activities. Most previous studies have investigated the functions of NKT cells as a single family but more recent evidence indicates the distinct functional properties of NKT cell subpopulation. This study aims to determine whether NKT cell subpopulations have different stimulatory activities on other immune cells that may affect the outcome of NKT cell-based immunotherapy. Methods. NKT cells and NKT cell subpopulations (CD4(+)CD8(-), CD4(-)CD8(+), CD4(-)CD8(+)) were cocultured with PBMC and their activities on immune cells including CD4(+) and CD8(+) T cells, NK cells, and B cells were assessed by flow cytometry. The production of cytokines in culture was measured by enzyme-linked immunsorbent assay. Results. The CD4(+)CD8(-) NKT cells demonstrated substantially greater stimulatory activities on CD4(+) T cells, NK cells, and B cells than other NKT cell subsets. The CD4(-)CD8(+) NKT cells showed the greatest activity on CD8(+) T cells, and were the only NKT cell subset that activated these immune cells. The CD4(-)CD8(-) NKT cells showed moderate stimulatory activity on CD4(+) T cells and the least activity on other immune cells. Conclusion. The results here suggest that NKT cell subpopulations differ in their abilities to stimulate other immune cells. This highlights the potential importance of manipulating specific NKT cell subpopulations for particular therapeutic situations and of evaluating subpopulations, rather than NKT cells as a group, during investigation of a possible role of NKT cells in various disease settings. (c) 2006 International Society for Experimental Hematology. Published by Elsevier Inc.
Resumo:
Dilated cardiomyopathy (DCM) is an etiologically heterogeneous cardiac disease characterized by left ventricular dilation and systolic dysfunction. Approximately 25-30% of DCM patients show a family history of mainly autosomal dominant inheritance. We and others have previously demonstrated that mutations in the giant muscle filament titin (TTN) can cause DCM. However, the prevalence of titin mutations in familial DCM is unknown. In this paper, we report a novel heterozygous 1-bp deletion mutation (c.62890delG) in TTN that cosegregates with DCM in a large Australian pedigree (A3). The TTN deletion mutation c.62890delG causes a frameshift, thereby generating a truncated A-band titin due to a premature stop codon (p.E20963KfsX10) and the addition of ten novel amino acid residues. The clinical phenotype of DCM in kindred A3 demonstrates incomplete penetrance and variable expressivity. Finally, protein analysis of a skeletal muscle biopsy sample from an affected member did not reveal the predicted truncated titin isoform although the aberrant mRNA was present, suggesting posttranslational modification and degradation of the truncated protein. The identification of a novel disease-causing mutation in the giant titin gene in a third large family with DCM indicates that mutations in titin may account for a significant portion of the genetic etiology in familial DCM.
Resumo:
In 1977 a five-part conjecture was made about a family of groups related to trivalent graphs and subsequently two parts of the conjecture were proved. The conjecture completely determines all finite members of the family. Here we complete the proof of the conjecture by giving proofs for the remaining three parts. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Dimethylsulfide (DMS) dehydrogenase catalyses the oxidation of DMS to dimethylsulfoxide. The purified enzyme has three subunits of Mr = 94, 38 and 32 kDa and has an optical spectrum dominated by a b-type cytochrome. The metal ion and nucleotide analysis revealed 0.5 g-atom Mo, 9.8 g-atom Fe and 1.96 mol GMP per tool of enzyme. Taken together, these data indicate that DMS dehydrogenase contains a bis(MGD)Mo cofactor. A comparison of the Nterminal amino acid sequence of DMS dehydrogenase revealed that the Mo-containing ct-subunit was most closely related to the c~-subunits of nitrate reductase (NarG) and selenate reductase (SerA). Similarly, the [~-subunit of DMS dehydrogenase was most closely related to the [3-subunits of nitrate reductase (NarH) and selenate reductase (SerB). Variable temperature X-band EPR spectra (120-2K) of 'as isolated' DMS dehydrogenase showed resonances arising from multiple redox centres, Mo(V), [3Fe-4S] +, [4Fe-4S] ÷. A pH dependent EPR study of the Mo(V) centre in lH20 and 2H20 reveals the presence of three Mo(V) species in equilibrium, Mo(V)-OH2, Mo(V)-X and Mo(V)-OH. Between pH6 and 8.2 the dominant species is Mo(V)-OH2 and Mo(V)-X is a minor component. X is probably the anion, chloride. Comparison of the rhombicity and anisotropy parameters for the Mo(V) species in DMS dehydrogenase with other Mo(V) centres in metalloproteins showed that it was most similar to the low pH nitrite spectrum of E. coli nitrate reductase (NarGHI). The spin Hamiltonian parameters (2.0158, 1.8870, 1.8620) for the [4Fe-4S] + cluster suggests the presence of histidine (N) coordination to iron in this cluster. It is suggested that this unusual [Fe-S] cluster may be associated with a histidine-cysteine rich sequence at the N-terminus of the ct-subunit of DMS dehydrogenase.
Resumo:
The 5-HT3 receptors are members of the cys-loop family of ligand-gated ion channels. Two functional subtypes are known, the homomeric 5HT3A and the heteromeric 5HT3A/B receptors, which exhibit distinct biophysical characteristics but are difficult to differentiate pharmacologically. Atomic force microscopy has been used to determine the stoichiometry and architecture of the heteromeric 5HT3A/B receptor. Each subunit was engineered to express a unique C-terminal epitope tag, together with six sequential histidine residues to facilitate nickel affinity purification. The 5-HT3 receptors, ectopically expressed in HEK293 cells, were solubilised, purified and decorated with antibodies to the subunit specific epitope tags. Imaging of individual receptors by atomic force microscopy revealed a pentameric arrangement of subunits in the order BBABA, reading anti-clockwise when viewed from the extracellular face. Homology models for the heteromeric receptor were then constructed using both the electron microscopic structure of the nicotinic acetylcholine receptor, from Torpedo marmorata, and the X-ray crystallographic structure of the soluble acetylcholine binding protein, from Lymnaea stagnalis, as templates. These homology models were used, together with equivalent models constructed for the homomeric receptor, to interpret mutagenesis experiments designed to explore the minimal recognition differences of both the natural agonist, 5-HT, and the competitive antagonist, granisetron, for the two human receptor subtypes. The results of this work revealed that the 5-HT3B subunit residues within the ligand binding site, for both the agonist and antagonist, are accommodating to conservative mutations. They are consistent with the view that the 5-HT3A subunit provides the principal and the 5-HT38 subunit the complementary recognition interactions at the binding interface.
Resumo:
Background: Peanut allergy (PA) is known to impact on quality of life (QoL) of the sufferer, but little research has focused on all family members. We therefore sought to establish the impact of PA on QoL and reported anxiety of children with clinically confirmed PA, their parents and older siblings. Methods: Forty-six families, who had a child with PA, completed QoL (PedsQLTM or WHOQOL-BREF), anxiety (SCAS or STAI) and perceived stress (PSS) scales. PA children completed a PA specific QoL questionnaire (Pediatr Allergy Immunol 2003;14:378). Parents and sibling also completed QoL proxy questionnaires for the PA child (PedsQLTM, Pediatr Allergy Immunol 2003;14:378). Results: Mothers rated their own psychological (P < 0.01) and physical (P < 0.05) QoL significantly worse than fathers rated theirs, and had higher scores than fathers for anxiety (P < 0.05) and stress (P < 0.001). Children with PA had significantly poorer physical health-related QoL (P < 0.05), QoL within school (P < 0.01) and general QoL (P < 0.05) than their siblings did, and greater separation anxiety (P < 0.05). The majority of differences were between girls with PA and female siblings. Mothers felt that there was a greater impact on QoL for their PA child, compared with that reported by siblings, fathers or the PA children themselves (P < 0.01). Conclusions: Mothers report that they have significantly poorer QoL and suffer more anxiety and stress than fathers do; this inter-parental difference may be an important feature of family stress caused by PA. Siblings have a similar view of how QoL affects the PA child as the PA child does, while mothers may possibly overestimate this impact.