972 resultados para Ammonium sulfonitrate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The sensory element was a plastic antibody designed by surface imprinting with carefully selected monomers to ensure a specific response. These were designed on the wall of carbon nanotubes, taking advantage of their exceptional electrical properties. The stereochemical ability of the sensory material to detect MCs was checked by preparing blank materials where the imprinting stage was made without the template molecule. The novel sensory material for MCs was introduced in a polymeric matrix and evaluated against potentiometric measurements. Nernstian response was observed from 7.24 × 10−10 to 1.28 × 10−9 M in buffer solution (10 mM HEPES, 150 mM NaCl, pH 6.6), with average slopes of −62 mVdecade−1 and detection capabilities below 1 nM. The blank materials were unable to provide a linear response against log(concentration), showing only a slight potential change towards more positive potentials with increasing concentrations (while that ofthe plastic antibodies moved to more negative values), with a maximum rate of +33 mVdecade−1. The sensors presented good selectivity towards sulphate, iron and ammonium ions, and also chloroform and tetrachloroethylene (TCE) and fast response (<20 s). This concept was successfully tested on the analysis of spiked environmental water samples. The sensors were further applied onto recycled chips, comprehending one site for the reference electrode and two sites for different selective membranes, in a biparametric approach for “in situ” analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel surface molecularly-imprinted (MI) material to detect myoglobin (Myo) using gold screen printed electrodes (SPE) was developed. The sensitive detection was carry out by introducing a carboxylic polyvinyl chloride (PVC-COOH) layer on gold SPE surface. Myo was attached to the surface of gold SPE/PVC-COOH and the vacant spaces around it were filled by polymerizing acrylamide and N,N-methylenebisacrylamide (cross-linker). This polymerization was initiated by ammonium persulphate. After removing the template, the obtained material was able to rebind Myo and discriminate it among other interfering species. Various characterization techniques including electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) confirmed the surface modification. This sensor seemed a promising tool for screening Myo in point-of-care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work reports new sensors for the direct determination of Microcystin-LR (MC-LR) in environmental waters. Both selective membrane and solid contact were optimized to ensure suitable analytical features in potentiometric transduction. The sensing layer consisted of Imprinted Sol–Gel (ISG) materials capable of establishing surface interactions with MC-LR. Non-Imprinted Sol–Gel (NISG) membranes were used as negative control. The effects of an ionic lipophilic additive, time of sol–gel polymerization, time of extraction of MC-LR from the sensitive layer, and pH were also studied. The solid contact was made of carbon, aluminium, titanium, copper or nickel/chromium alloys (80 : 20 or 90 : 10). The best ISG sensor had a carbon solid contact and displayed average slopes of 211.3 mV per decade, with detection limits of 7.3 1010 M, corresponding to 0.75 mg L1 . It showed linear responses in the range of 7.7 1010 to 1.9 109 M of MC-LR (corresponding to 0.77–2.00 mg L1 ), thus including the limiting value for MC-LR in waters (1.0 mg L1 ). The potentiometric-selectivity coefficients were assessed by the matched potential method for ionic species regularly found in waters up to their limiting levels. Chloride (Cl) showed limited interference while aluminium (Al3+), ammonium (NH4 + ), magnesium (Mg2+), manganese (Mn2+), sodium (Na+ ), and sulfate (SO4 2) were unable to cause the required potential change. Spiked solutions were tested with the proposed sensor. The relative errors and standard deviation obtained confirmed the accuracy and precision of the method. It also offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel artificial antibody for troponin T (TnT) was synthesized by molecular imprint (MI) on the surface of multiwalled carbon nanotubes (MWCNT). This was done by attaching TnT to the MWCNT surface, and filling the vacant spaces by polymerizing under mild conditions acrylamide (monomer) in N,N′-methylenebisacrylamide (cross-linker) and ammonium persulphate (initiator). After removing the template, the obtained biomaterial was able to rebind TnT and discriminate it among other interfering species. Stereochemical recognition of TnT was confirmed by the non-rebinding ability displayed by non-imprinted (NI) materials, obtained by imprinting without a template. SEM and FTIR analysis confirmed the surface modification of the MWCNT. The ability of this biomaterial to rebind TnT was confirmed by including it as electroactive compound in a PVC/plasticizer mixture coating a wire of silver, gold or titanium. Anionic slopes of 50 mV decade−1 were obtained for the gold wire coated with MI-based membranes dipped in HEPES buffer of pH 7. The limit of detection was 0.16 μg mL−1. Neither the NI-MWCNT nor the MWCNT showed the ability to recognize the template. Good selectivity was observed against creatinine, sucrose, fructose, myoglobin, sodium glutamate, thiamine and urea. The sensor was tested successfully on serum samples. It is expected that this work opens new horizons on the design of new artificial antibodies for complex protein structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0 mV decade−1 and 1.0 × 10−5 to 2.7 × 10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work proposes a new biomimetic sensor material for trimethoprim. It is prepared by means of radical polymerization, having trimethylolpropane trimethacrylate as cross-linker, benzoyl peroxide as radicalar iniciator, chloroform as porogenic solvent, and methacrylic acid and 2-vinyl pyridine as monomers. Different percentages of sensor in a range between 1 and 6% were studied. Their behavior was compared to that obtained with ion-exchanger quaternary ammonium salt (additive tetrakis(p-chlorophenyl)borate or tetraphenylborate). The effect of an anionic additive in the sensing membrane was also tested. Trimethoprim sensors with 1% of imprinted particles from methacrylic acid monomers showed the best response in terms of slope (59.7 mV/decade) and detection limit (4.01 × 10− 7 mol/L). These electrodes displayed also a good selectivity towards nickel, manganese aluminium, ammonium, lead, potassium, sodium, iron, chromium, sulfadiazine, alanine, cysteine, tryptophan, valine and glycine. The sensors were not affected by pH changes from 2 to 6. They were successfully applied to the analysis of water from aquaculture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

III Jornadas de Electroquímica e Inovação (Electroquímica e Nanomateriais), na Universidade de Trás-os-Montes e Alto Douro, Vila Real, 16 a 17 de Setembro de 2013

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graduate Student Symposium on Molecular Imprinting 2013, na Queen’s University, Belfast, United Kingdom, 15 a 17 de Agosto de 2013

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hindawi Publishing Corporation Bioinorganic Chemistry and Applications Volume 2010, Article ID 634597, 8 pages

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The baseline susceptibility of primary HIV-2 to maraviroc (MVC) and other entry inhibitors is currently unknown. METHODS: The susceptibility of 19 HIV-2 isolates obtained from asymptomatic and AIDS patients and seven HIV-1 clinical isolates to the fusion inhibitors enfuvirtide (ENF) and T-1249, and to the coreceptor antagonists AMD3100, TAK-779 and MVC, was measured using a TZM-bl cell-based assay. The 50% inhibitory concentration (IC(50)), 90% inhibitory concentration (IC(90)) and dose-response curve slopes were determined for each drug. RESULTS: ENF and T-1249 were significantly less active on HIV-2 than on HIV-1 (211- and 2-fold, respectively). AMD3100 and TAK-779 inhibited HIV-2 and HIV-1 CXCR4 tropic (X4) and CCR5 tropic (R5) variants with similar IC(50) and IC(90) values. MVC, however, inhibited the replication of R5 HIV-2 variants with significantly higher IC(90) values (42.7 versus 9.7 nM; P<0.0001) and lower slope values (0.7 versus 1.3; P<0.0001) than HIV-1. HIV-2 R5 variants derived from AIDS patients were significantly less sensitive to MVC than variants from asymptomatic patients, this being inversely correlated with the absolute number of CD4(+) T-cells. CONCLUSIONS: T-1249 is a potent inhibitor of HIV-2 replication indicating that new fusion inhibitors might be useful to treat HIV-2 infection. Coreceptor antagonists TAK-779 and AMD3100 are also potent inhibitors of HIV-2 replication. The reduced sensitivity of R5 variants to MVC, especially in severely immunodeficient patients, indicates that the treatment of HIV-2-infected patients with MVC might require higher dosages than those used in HIV-1 patients, and should be adjusted to the disease stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Doctorate in Biology, Specialty in Biotechnology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia do ambiente, perfil de engenharia sanitária

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene therapy presents an ideal strategy for the treatment of genetic as well as acquired diseases, such as cancer and typically involves the insertion of a functioning gene into cells to correct a cellular dysfunction or to provide a new cellular function. Gene delivery vectors are based in two models: viral and non-viral. Viral vectors have high transfection efficiency but their major barrier is immunogenicity. Since the non-viral vectors have no immunogenicity, these have been widely studied. Gold nanoparticles have been proposed as optimal delivery systems of genetic material, due their small size, high surface-to-volume ratio and the ability to be functionalized with multiple molecules. In the present work, an AuNP-based formulation was developed to deliver a plasmid in a colorectal cancer cell line, containing as reporter gene the gene encoding to EGFP. The delivery system resulted from the functionalization of 14 nm AuNP with a PEG layer (4300114 PEG chains/AuNP), which increases stability and biocompatibility of AuNPs; quaternary ammonium groups which provide positive charges that allow electrostatic binding of plasmid, which is considered the therapeutic agent to be transported into cells. The system developed was characterized by UV-vis spectroscopy, DLS, TEM and by electrophoretic mobility, yielding a formulation with 113.5 nm.Transfection efficiency of the formulation developed was evaluated through PCR and through EGFP expression by fluorescence microscopy and fluorescence spectroscopy. The internalization was observed 3h post transfection; however a low level of EGFP expression was achieved. After 24h of incubation, EGFP expression increases just 3 times compared to non-transfected cells. The commercial system (Lipofectamine) expressed EGFP 5 times more than the system developed AuNP@PEG@R4N+@pEGFP. This difference could be related to lower translocation to the nucleus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyhydroxyalkanoates (PHAs) are biosynthetic polyesters, biodegradable and biocompatible making them of great interest for industrial purposes. The use of low value substrates with mixed microbial communities (MMC) is a strategy currently used to decrease the elevated PHA production costs. PHA production process requires an important step for selection and enrichment of PHA-storing microorganisms which is usually carried out in a Sequencing Batch Reactor (SBR). The aim of this study was to optimize the PHA accumulating culture selection stage using a 2-stage Continuous Stirrer Tank Reactor (CSTR) system. The system was composed by two separate feast and famine bioreactors operated continuously, mimicking the feast and famine phases in a SBR system. Acetate was used as carbon source and biomass seed was highly enriched in Plasticicumulans acidivorans obtained from activated sludge. The system was operated under two different sets of conditions (setup 1 and 2), maintaining a system total retention time of 12 hours and an OLR of 2.25 Cmmol/L.h-1. An average PHB-content of 3.3 % wt was obtained in setup 1 and 4.8% wt in setup 2. Several other experiments were performed in order to better understand the continuous system behaviour, using biomass from the continuous system. With the fed-batch experiment a maximum of 8.1% PHB was stored and the maximum substrate uptake and specific growth rates obtained in the growth experiment (1.15 Cmol Cmol-1.h-1 and 0.53 Cmol Cmol-1.h-1) were close to the ones from continuous system (1.12 Cmol Cmol-1.h-1 and 0.59 Cmol Cmol-1.h-1). The microbial community was characterized trough microscopic visualization, Denaturing Gradient Gel Electrophoresis (DGGE) analysis and Fluorescent in situ hybridization (FISH). The last studied performed mimicked the continuous system by building up a SBR system with all the same operational conditions while adding an extra acetate dosage during the 12 h cycle, simulating the substrate passing from the feast to the famine reactors under continuous operation. It was shown that possibly the continuous system was not able to efficiently select for PHB storing organisms under the operational conditions imposed, although the selected culture was capable of consuming the substrate and grow fast. This main conclusion might have resulted from two major factors affecting the system performance: the ammonium concentration in the Feast reactor and the amount of substrate leaching from the Feast to the Famine reactor.