992 resultados para Alpine grassland
Resumo:
A lack of archives has impeded reconstructions of moisture pathways for past glaciations in the European Alps. Here, we focus on the confluence area of two palaeoglaciers in the Swiss Plateau that were sourced on the northern (Aare glacier) and southern sides (Valais glacier) of the European Alps. We mapped tunnel valleys in the region using a drilling database, based on which we inferred the relative extent of each glacier c. 270 ka ago when the valleys were formed. We then compared this situation with that of the LGM. We found that, while the Valais glacier expanded farther into the foreland than the Aare glacier during the LGM, the opposite was the case c. 270 ka ago. We also found that LGM glaciers were non-erosive in the distal foreland. These contrasts in extents and erosional efficiencies imply differences in moisture pathways between the LGM and the time when the tunnel valleys were formed.
Resumo:
It is estimated that N losses from fertilized crops range between 50-70%, depending on management practices, climate and soil conditions. Ammonia (NH3) emissions following land application of animal manures give rise to a significant proportion of the total NH3 emissions from agricultural sources.
Resumo:
Compositional and chemical analyses suggest that Middle Triassic–Lower Liassic continental redbeds (in the internal domains of the Betic, Maghrebian, and Apenninic chains) can be considered a regional lithosome marking the Triassic-Jurassic rift-valley stage of Tethyan rifting, which led to the Pangaea breakup and subsequent development of a mosaic of plates and microplates. Sandstones are quartzose to quartzolithic and represent a provenance of continental block and recycled orogen, made up mainly of Paleozoic metasedimentary rocks similar to those underlying the redbeds. Mudrocks display K enrichments; intense paleoweathering under a hot, episodically humid climate with a prolonged dry season; and sediment recycling. Redbeds experienced temperatures in the range of 100°–160°C and lithostatic/tectonic loading of more than 4 km. These redbeds represent an important stratigraphic signature to reconstruct a continental block (Mesomediterranean Microplate) that separated different realms of the western Tethys from Middle-Late Jurassic to Miocene, when it was completely involved in Alpine orogenesis.
Resumo:
The Treaty of Lisbon (2009) explicitly added - in Article 3 of the Treaty on the European Union (TEU) and Article 174 of the Treaty on the Functioning of the European Union (TFEU) - the principle of territorial cohesion to the already existing principles of social and economic cohesion between the EU Member States. To concretely reach the objective of territorial cohesion, the EU created – on the one hand - the legal instrument of the “European Grouping for Territorial Cooperation” adopted through regulation n. 1082/2006 (EGTC). This allows cross-border cooperation between local and regional authorities. On the other hand, in 2009 a new form of European transnational cooperation has been introduced, the so called Macro Regional Strategy (MRS). This was firstly applied to the Baltic Sea Region in order to give to this cross - border geographical area a coordinated framework in specific policy fields, such as the environment and the infrastructures. Both concepts - EGTC and MRS - are based on the fundamental idea of supporting the territorial and cross - border cooperation between local, regional and national authorities and other stakeholders. Despite this common aspect, the two instruments differ profoundly in terms of form, structure and content. While the MRS is to be considered as a political integrated framework without its own financial resources, the instrument of the EGTC is based on a stable legal basis. To this extent, the alpine region - a large geographic area in the heart of Europe with a longstanding tradition in crossborder cooperation - represents an interesting practical example with regard to the implementation of these two forms of cooperation across borders. In fact, the countries and regions in the Alpine area are unified through the Alps and face, therefore, common challenges: that is why this “region” is ideally suited to be the ground for experiments regarding transnational tools and strategies.
Resumo:
In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ngm-3 and black carbon (BC) up to 17 μgm-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf/ was the dominant fraction of PM1, with the primary (POCnf/ and secondary (SOCnf/ fractions contributing 26–44% and 13–23% to the total carbon (TC), respectively. 5–8% of the TC had a primary fossil origin (POCf/, whereas the contribution of fossil secondary organic carbon (SOCf/ was 4–13 %. Nonfossil EC (ECnf/ and fossil EC (ECf/ ranged from 13–24 and 7–13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.
Resumo:
The magnetic properties of a sediment core from a high altitude lake in the Swiss Alps were compared with palynological and geochemical data to link climatic and mineral magnetic variations. According to pollen data, the sediments extend from the present to the Younger Dryas, i.e., they cover more than 10,000 years of environmental change in the Alps. The major change in magnetic properties corresponds to the climatic warming of the early Holocene. High-coercivity magnetic minerals that characterize the Late Glacial period almost disappeared during the Holocene and the concentration of ferrimagnetic minerals increased sharply. The contribution of superparamagnetic grains also decreased in the Holocene sediments. Similar variations in {SP} content and coercivity, of smaller magnitude, are found in the Holocene and are interpreted to represent minor climatic variations. Comparison with the historical record of the last 1000 years confirms this interpretation. The magnetic mineralogy, the superparamagnetic contents, and the {IRM} intensity in the coarse-grained, Late Glacial sediments are similar to those measured in the catchment bedrock. This indicates a detrital origin. The different properties and the higher concentration of magnetic minerals in the Holocene sediments are due to authigenic phases. Magnetic properties provide a high resolution record of climatic change. They are sensitive even to small variations that are not recorded in the pollen or {LOI} data. Magnetic parameters show fine-scale variation and constitute a valuable supplement to conventional climatic indicators.