974 resultados para Alpine deglaciation
Resumo:
The understanding of rock breaking and chipping due to the TBM cutter disks mechanism in deep tunnels is considered in this paper. The interest stems from the use of TBMs for the excavation of long Trans-Alpine tunnels. Some tests that simulate the disk cutter action at the tunnel face by means of an indenter, acting on a rock specimen are proposed. The rock specimen is confined through a flat-jack and a confinement-free area on one side of the specimen simulates the formation of a groove near the indenter, like it occurs in TBM excavation conditions. Results show a limited influence of the confinement stress versus the thrust increment required for breaking the rock between the indenter and the free side of the specimen. Numerical modelling of the cutter disk action on confined material has also been carried out in order to investigate further aspects of the fracture initiation. Also in this case the importance of the relative position between disk cutter and groove is pointed out. © 2006 Springer-Verlag.
Resumo:
Considering that TBMs are nowadays used for long Trans-Alpine tunnels, the
understanding of rock breaking and chipping due to TBM cutter disks mechanism, for deep tunnelling operations, becomes very interesting. In this paper, the results from carried out laboratory tests that simulate the disk cutter action at the rock tunnel face by means of an indentation tool, acting on a rock
specimen with proper size, and the related three-dimensional and two-dimensional numerical modelling are proposed. The developed numerical models simulate the different test conditions (applied load, boundary conditions) allowing the analysis of the stresses distributions along possible breaking planes.
The influence of a confinement-free area on one side of the specimen, simulating the formation of a groove near the tool, is pointed out.
The obtained results from numerical modelling put in evidence a satisfactory agreement with the experimental observations.
Resumo:
ABSTRACT
The start of the Upper Wurmian in the Alps was marked by massive fluvioglacial aggradation prior to the arrival of the Central Alpine glaciers. In 1984, the Subcommission on European Quaternary Stratigraphy defined the clay pit of Baumkirchen (in the foreland of the Inn Valley, Austria) as the stratotype for the Middle to Upper Wurmian boundary in the Alps. Key for the selection of this site was its radiocarbon chronology, which still ranks among the most important datasets of this time interval in the Alps. In this study we re-sampled all available original plant specimens and established an accelerator mass spectrometry chronology which supersedes the published 40-year-old chronology. The new data show a much smaller scatter and yielded slightly older conventional radiocarbon dates clustering at ca. 31 C-14 ka BP. When calibrated using INTCAL13 the new data suggest that the sampled interval of 653-681 m in the clay pit was deposited 34-36 cal ka BP. Using two new radiocarbon dates of bone fragments found in the fluvioglacial gravel above the banded clays allows us to constrain the timing of the marked change from lacustrine to fluvioglacial sedimentation to ca. 32-33 cal ka BP, which suggests a possible link to the Heinrich 3 event in the North Atlantic. Copyright (c) 2013 John Wiley & Sons, Ltd.
Resumo:
We prove that if G is S1 or a profinite group, then all of the homotopical information of the category of rational G-spectra is captured by the triangulated structure of the rational G-equivariant stable homotopy category.
That is, for G profinite or S1, the rational G-equivariant stable homotopy category is rigid. For the case of profinite groups this rigidity comes from an intrinsic formality statement, so we carefully relate the notion of intrinsic formality of a differential graded algebra to rigidity.
Resumo:
Identifying groundwater contributions to baseflowforms an essential part of surfacewater body characterisation. The Gortinlieve catchment (5 km2) comprises a headwater stream network of the Carrigans River, itself a tributary of the River Foyle, NW Ireland. The bedrock comprises poorly productive metasediments that are characterised by fracture porosity. We present the findings of a multi-disciplinary study that integrates new hydrochemical and mineralogical investigations with existing hydraulic, geophysical and structural data to identify the scales of groundwater flow and the nature of groundwater/bedrock interaction (chemical denudation). At the catchment scale, the development of deep weathering profiles is controlled by NE-SW regional scale fracture zones associated with mountain building during the Grampian orogeny. In-situ chemical denudation of mineral phases is controlled by micro- to meso-scale fractures related to Alpine compression during Palaeocene to Oligocene times. The alteration of primary muscovite, chlorite (clinochlore) and albite along the surfaces of these small-scale fractures has resulted in the precipitation of illite, montmorillonite and illite/montmorillonite clay admixtures. The interconnected but discontinuous nature of these small-scale structures highlights the role of larger scale faults and fissures in the supply and transportation of weathering solutions to/from the sites of mineral weathering. The dissolution of primarily mineral phases releases the major ions Mg, Ca and HCO3 that are shown to subsequently formthe chemical makeup of groundwaters. Borehole groundwater and stream baseflow hydrochemical data are used to constrain the depths of groundwater flow pathways influencing the chemistry of surface waters throughout the stream profile. The results show that it is predominantly the lower part of the catchment, which receives inputs from catchment/regional scale groundwater flow, that is found to contribute to the maintenance of annual baseflow levels. This study identifies the importance
of deep groundwater in maintaining annual baseflow levels in poorly productive bedrock systems.
Resumo:
Tischoferhohle and Pendling-Barenhohle near Kufstein, Tyrol, are among the only locations where remains of cave bear, Ursus spelaeus-group, were found in the western part of Austria. One sample from each site was radiocarbon-dated four decades ago to ca. 28 C-14 ka BP. Here we report that attempts to date additional samples from Pendling-Barenhohle have failed due to the lack of collagen, casting doubts on the validity of the original measurement. We also unsuccessfully tried to date flowstone clasts embedded in the bone-bearing sediment to provide maximum constraints on the age of this sediment. Ten cave bear bones from Tischoferhohle showing good collagen preservation were radiocarbon-dated to 31.1-39.9 C-14 ka BP, again pointing towards an age underestimation by the original radiocarbon-dated sample from this site. These new dates from Tischoferhohle are therefore currently the only reliable cave bear dates in western Austria and constrain the interval of cave occupation to 44.3-33.5 cal ka BP. We re-calibrate and re-evaluate dates of alpine cave bear samples in the context of available palaeoclimate information from the greater alpine region covering the transition into the Last Glacial Maximum, eventually leading to the demise of this megafauna.
Resumo:
Climate change during the last deglaciation was strongly influenced by the „bipolar seesaw‟, producing antiphase climate responses between the North and South Atlantic. However, mounting evidence demands refinements of this model, with the occurrence of abrupt events in southern low to mid latitudes occurring in-phase with North Atlantic climate. Improved constraints on the north-south phasing and spatial extent of these events are therefore critical to
understanding the mechanisms that propagate abrupt events within the climate system. We present a 19,400 year multi-proxy record of climate change obtained from a rock hyrax midden in southernmost Africa. Arid anomalies in phase with the Younger Dryas and 8.2 ka events are apparent, indicating a clear shift in the influence of the bipolar seesaw, which diminished as the Earth warmed, and was succeeded after ~14.6 ka by the emergence of a dominant interhemispheric atmospheric teleconnection.
Resumo:
Studies of marine sediments, cave speleothemes, annually laminated corals, and tree rings from Asian monsoon regions have added knowledge to our understanding of the factors that control inter-annual to millennial monsoon variability in the past and have provided important constraints for climate modeling scenarios. In contrast, the spatial and temporal pattern of sub-millennial scale monsoon variability and its impact on land cover in SE Asia are still unresolved. This shortcoming stems from the fact that temporally well-resolved paleo-environmental studies are missing from large parts of SE Asia, especially from Thailand. Given that global and regional climate models are increasingly using terrestrial paleo- data to test their performance, past changes in land cover are therefore important variables to better understand feedbacks between different Earth systems. We obtained sediments from Lake Nong Thale Pron, in southern Thailand (8º 10`N, 99 º23`E; 380 m.asl). The aim of our study is to reconstruct lake status changes and to evaluate whether the extent of these changes are linked to known shifts in monsoon intensity and variability. Preliminary results show that lake infilling started more than 15,000 years ago and that the sediments cover the last deglaciation and the Holocene. Current analyses include Itrax XRF core scanning, loss-on-ignition (LOI at 950 and 550ºC), CN elemental and isotopic composition. We expect that our results will be able to give a picture of how the lake's status has changed over time and whether the extent of these changes is linked to known shifts in monsoon intensity and variability.
Late-Pleistocene palaeoclimate and glacial activity recorded from lake sediments in the Eastern Alps
Resumo:
Greenland ice core data show that the last glaciation in the Northern Hemisphere was characterized by relatively short and rapid warming-cooling cycles. While the Last Glacial Maximum (LGM) and the following Late Glacial are well documented in the Eastern Alps, continuous and well dated records of the time period preceding the LGM are only known from stalagmites. Although most of the sediment that filled the Alpine valleys prior to the LGM was eroded, thick successions have been locally preserved as terraces along the flanks of large longitudinal valleys. The Inn valley in Tyrol (Austria) offers the most striking examples of Pleistocene terraces in the Eastern Alps. A large number of drill cores provides the opportunity to study these sediments for the first time in great detail. Our study focuses on the river terrace of Unterangerberg near Wörgl, where LGM gravel and till were deposited on top of (glacio)lacustrine sediments. The cores comprise mostly silty material, ranging from organic-rich to organic-poor and dropstone-rich beds. A diamictic layer classified as basal till is present at the bottom of the lake sediments. Radiocarbon ages of plant macro remains from the lake sequences indicate deposition between ~40 and >50 cal. ka BP. Luminescence ages obtained from fine-grain polymineral (4-11 μm) samples suggest an age of the lake deposits between ~40 to 60 ka and are consistent with the radiocarbon dates. Sedimentological analyses indicate that sedimentation in these palaeolakes was driven by local processes, but also by climatically induced changes in nearby glacier activity. These observations strongly hint towards a significant ice advance in the Eastern Alps during the early last glacial and subsequent mild interstadial conditions, supporting a local coniferous forest vegetation.
Resumo:
The presence of Mn-Fe nodules in the epipedons (surface horizons) of paleosols of presumed Upper Neogene age in the northwestern Venezuelan Andes have been interpreted as products of inorganic oxidation and reduction processes operating over the full range of glacial and interglacial cycles that affected paleosol morphogenesis. New microscopic/chemical data from combined SEM-EDS-FIB analyses of representative Mn-Fe nodules indicate microbes play an important role in Mn/Fe precipitation leading to their genesis in alpine Mollisols (Argiustolls). Although the prevailing new data are based mainly on fossil forms of filamentous bacteria and fungi and other biogenic pseudomorphs that may represent the former resident bacteria, the presence of extant microbes must await field experiments/collection, followed by a molecular microbiology approach to determine the biological drivers of metal precipitation. As in other terrestrial niche environments, microbes are seen here to play a role, perhaps a key one, in the morphogenesis of paleosols of importance in upper Neogene paleoenvironmental reconstruction.
Resumo:
Understanding the dietary consumption and selection of wild populations of generalist herbivores is hampered by the complex array of factors. Here, we determine the influence of habitat, season, and animal density, sex, and age on the diet consumption and selection of 426 red deer (Cervus elaphus scoticus) culled in Fiordland National Park, New Zealand. Our site differs from studies elsewhere both in habitat (evergreen angiosperm-dominated forests) and the intensity of hunting pressures. We predicted that deer would not consume forage in proportion to its relative availability, and that dietary consumption would change among and within years in response to hunting pressures that would also limit opportunities for age and sex segregation. Using canonical correspondence analysis, we evaluated the relative importance of different drivers of variation in diet consumption assessed from gut content and related these to available forage in the environment. We found that altitude explained the largest proportion of variation in diet consumption, reflecting the ability of deer to alter their consumption and selection in relation to their foraging grounds. Grasses formed a high proportion of the diet consumption, even for deer culled several kilometres from the alpine grasslands. In the winter months, when the alpine grasslands were largely inaccessible, less grass was eaten and deer resorted to woody plants that were avoided in the summer months. Surprisingly, there were no significant dietary differences between adults and juveniles and only subtle differences between the sexes. Sex-based differences in diet consumption are commonly observed in ungulate species and we suggest that they may have been reduced in our study area owing to decreased heterogeneity in available forage as the diversity of palatable species decreased under high deer browsing pressures, or by intense hunting pressure. © 2009 The Authors. Journal compilation © 2009 Ecological Society of Australia.
Resumo:
Fossil mesofauna and bacteria recovered from a paleosol in a moraine situated adjacent to the inland ice, Antarctica, and dating to the earliest glacial event in the Antarctic Dry Valleys opens several questions. The most important relates to understanding of the mineralogy and chemistry of the weathered substrate habitat in which Coleoptera apparently thrived at some point in the Early/Middle Miocene and perhaps earlier. Here, Coleoptera remains are only located in one of six horizons in a paleosol formed in moraine deposited during the alpine glacial event (> 15 Ma). A tendency for quartz to decrease upward in the section may be a detrital effect or a product of dissolution in the early stage of profile morphogenesis when climate was presumably milder and the depositing glacier of temperate type. Discontinuous distributions of smectite, laumontite, and hexahydrite may have provided nutrients and water to mesofauna and bacteria during the early stage of biotic colonization of the profile. Because the mesofauna were members of burrowing Coleoptera species, future work should assess the degree to which the organisms occupied other sites in the Dry Valleys in the past. Whereas there is no reasonable expectations of finding Coleoptera/insect remains on Mars, the chemistry and mineralogy of the paleosol is within a life expectancy window for the presence of microorganisms, principally bacteria and fungi. Thus, parameters discussed here within this Antarctic paleosol could provide an analogue to identifying similar fossil or life-bearing weathered regolith on Mars.
Resumo:
Tese de doutoramento, Geologia (Geodinâmica Interna), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-E/E-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing ocean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.