948 resultados para Alpha(2)-adrenoceptor
Resumo:
The effect of thermal treatment on phenolic compounds and type 2 diabetes functionality linked to alpha-glucosidase and alpha-amylase inhibition and hypertension relevant angiotensin I-converting enzyme (ACE) inhibition were investigated in selected bean (Phaseolus vulgaris L,) cultivars from Peru and Brazil using in vitro models. Thermal processing by autoclaving decreased the total phenolic content in all cultivars, whereas the 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity-linked antioxidant activity increased among Peruvian cultivars, alpha-Amylase and alpha-glucosidase inhibitory activities were reduced significantly after heat treatment (73-94% and 8-52%, respectively), whereas ACE inhibitory activity was enhanced (9-15%). Specific phenolic acids such as chlorogenic and caffeic acid increased moderately following thermal treatment (2-16% and 5-35%, respectively). No correlation was found between phenolic contents and functionality associated to antidiabetes and antihypertension potential, indicating that non phenolic compounds may be involved. Thermally processed bean cultivars are interesting sources of phenolic acids linked to high antioxidant activity and show potential for hypertension prevention.
Resumo:
Most researches that have been done until today about the beneficial effects of hariparoha (Pothomorphe umbellata L. Miq) have been done with root extract of this species, but the use in large scale would compromise the sustainable exploration of this natutral resource. In this sense, the utilization of pariparoha leaves, substituting the roots, in the cosmetic industry does not put in risk the existence of the species. In this work the concentration of 4-nerolidyl-cathecol (4-NC) in leaf extract was determined by the analytical methodology validated in our laboratory. The concentration of 4-NC in leaf extract was around 30% less than that of root extract, obtained in the same way. Concerning the study of the photostability of a leaves extract solution containing 4-NC did not demonstrate meaningful alterations in the spectrometry, profile after 2 hours of exposure under UVB radiation, showing its stability under this conditions. Metalloproteinases (MMPs) cure endopeptidases that are zinc-dependent, involved in remodeling extracellular matrix (ECM), that are important in the appearance of typical photoaging wrinkles. In this work the capacity of leaf extract of P. umbellata to inhibit MMP-2 and 9 activities of hairless mouse skin in vitro by zymography gel was also evalutated. The leaf extract (0,1 mg/mL) inhibit in 80% activity of this enzymes, according to the densitometric zymography evaluation.
Resumo:
Although the serum levels of SAA had been reported to be upregulated during inflammatory/infectious process, the role of this acute-phase protein has not been completely elucidated. In previous studies, we demonstrated that SAA stimulated the production of TNF-alpha, IL-1 beta, IL-8, NO, and ROS by neutrophils and/or mononuclear cells. Herein we demonstrate that SAA induces the expression and release of CCL20 from Cultured human blood mononuclear cells. We also focus on the signaling pathways triggered by SAA. in THP-1 cells SAA promotes phosphorylation of p38 and ERK1/2. Furthermore, the addition of SB203580 (p38 inhibitor) and PD98059 (ERK 1/2 inhibitor) inhibits the expression and release of CCL20 in mononuclear cells treated with SAA. Our results point to SAA as an important link of innate to adaptive immunity, once it might act on the recruitment of mononuclear cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The high efficient palladium-catalyzed Suzuki-Miyaura reactions of potassium aryltrifluoroborates 3 with 5-iodo-1,3-dioxin-4-ones 2a-b in water as only solvent in the presence of n-Bu(4)NOH as base is reported. The respective 5-aryl-1,3-dioxin-4-ones 4a-n were obtained in good to excellent yields. The catalyst system provides high efficiency at low load using electronically diverse coupling partners. The obtained 2,2,6-trimethyl-5-aryl-1,3-dioxin-4-ones were transformed into corresponding alpha-aryl-beta-ketoesters 6 by reaction with an alcohol in the absence of solvent. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Thymidine monophosphate kinase (TMPK) has emerged as an attractive target for developing inhibitors of Mycobacterium tuberculosis growth. In this study the receptor-independent (RI) 4D-QSAR formalism has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 5`-thiourea-substituted alpha-thymidine inhibitors. Models were developed for the entire training set and for a subset of the training set consisting of the most potent inhibitors. The optimized (RI) 4D-QSAR models are statistically significant (r(2) = 0.90, q(2) = 0.83 entire set, r(2) = 0.86, q(2) = 0.80 high potency subset) and also possess good predictivity based on test set predictions. The most and least potent inhibitors, in their respective postulated active conformations derived from the models, were docked in the active site of the TMPK crystallographic structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. This model identifies new regions of the inhibitors that contain pharmacophore sites, such as the sugar-pyrimidine ring structure and the region of the 5`-arylthiourea moiety. These new regions of the ligands can be further explored and possibly exploited to identify new, novel, and, perhaps, better antituberculosis inhibitors of TMPKmt. Furthermore, the 3D-pharmacophores defined by these models can be used as a starting point for future receptor-dependent antituberculosis drug design as well as to elucidate candidate sites for substituent addition to optimize ADMET properties of analog inhibitors.
Resumo:
Dolastatin units were synthesized from the 1,2-addition reactions of potassium allyl or crotyltrifluoroborate salts to aldehyde derivatives from natural amino acids. The reactions were carried out in presence of a phase-transfer catalyst in a biphasic medium at room temperature and excellent yields (>89-93%) and stereoselective (>90:10 to 98:2) were obtained. The dolastatin units 8 and 14a-b were obtained after three steps in good overall yields (50-62%). (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A 2(3-1) factorial experimental design was used to evaluate the performance of a perforated rotating disc contactor to extract alpha-toxin from the fermented broth of Clostridium perfringens Type A by aqueous two-phase system of polyethylene glycol-phosphate salts. The influence of three independent variables, specifically the dispersed phase flowrate, the continuous phase flowrate and the disc rotational speed, was investigated on the hold up, the mass transfer coefficient, the separation efficiency and the purification factor, taken as the response variables. The optimum dispersed phase flowrate was 3.0 mL/min for all these responses. Besides, maximum values of hold up (0.80), separation efficiency (0. 10) and purification factor (2.4) were obtained at this flowrate using the lowest disc rotational speed (35 rpm), while the optimum mass transfer coefficient (0. 165 h(-1)) was achieved at the highest agitation level (140 rpm). The results of this study demonstrated that the dispersed phase flowrate strongly influenced the performance of PRDC, in that both the mass transfer coefficient and hold up increased with this parameter. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
BACKGROUND: Purification of a-toxin produced by Clostridium perfringens type A in aqueous two-phase systems (ATPS) was studied with a full two-level factorial design on two factors (concentrations of 8000 g mol(-1) PEG and phosphate salt at pH 8.0), to estimate the influence of these factors on the purification results. RESULTS: The partition coefficient (K), purification factor (PF) and activity yield (Y) were strongly influenced by the PEG and phosphate concentrations. Raising the levels of the two factors increased these responses. The highest purification factor (5.7) was obtained with PEG and phosphate concentrations of 17.5% and 15%, respectively. CONCLUSION: These results support the proposal that polymer excluded volume and hydrophobic interactions are the factors that drive the alpha-toxin in PEG/phosphate aqueous two-phase systems. (c) 2008 Society of Chemical Industry
Resumo:
Described herein is a one-pot synthesis of a,p-epoxy ketones using a palladium-catalyzed epoxidation-oxidation sequence. Functionalized terminal allylic alcohols are treated with m-CPBA Under mild reaction conditions to obtain the alpha,beta-epoxy ketones. The main benefit of this approach is that the epoxidation of the terminal double bond and the oxidation of the secondary alcohol occured in the same reaction under mild reactions and both electron-donating and electron-withdrawing functionalities are tolerated in the reaction sequence. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Background. Oxidative stress is a significant contributor to cardiovascular diseases (CVD) in haemodialysis (HD) patients, predisposing to the generation of oxidized low-density lipoprotein (oxLDL) or electronegatively charged LDL subfraction. Antioxidant therapy such as alpha-tocopherol acts as a scavenger of lipid peroxyl radicals attenuating the oxidative stress, which decreases the formation of oxLDL. The present study was designed to investigate the influence of the alpha-tocopherol supplementation on the concentration of electronegative low-density lipoprotein [LDL(-)], a minimally oxidized LDL, which we have previously described to be high in HD patients. Methods. Blood samples were collected before and after 120 days of supplementation by alpha-tocopherol (400 UI/day) in 19 stable HD patients (50 +/- 7.8 years; 9 males). The concentrations of LDL(-) in blood plasma [using an anti-LDL- human monoclonal antibody (mAb)] and the anti-LDL(-) IgG auto-antibodies were determined by ELISA. Calculation of body mass index (BMI) and measurements of waist circumference (WC), triceps skin folds (TSF) and arm muscle area (AMA) were performed. Results. The plasma alpha-tocopherol levels increased from 7.9 mu M (0.32-18.4) to 14.2 mu M (1.22-23.8) after the supplementation (P = 0.02). The mean concentration of LDL(-) was reduced from 570.9 mu g/mL (225.6-1241.0) to 169.1 mu g/mL (63.6-621.1) (P < 0.001). The anti-LDL(-) IgG auto-antibodies did not change significantly after the supplementation. The alpha-tocopherol supplementation also reduced the total cholesterol and LDL-C levels in these patients, from 176 +/- 42.3 mg/dL to 120 +/- 35.7 mg/dL (P < 0.05) and 115.5 +/- 21.4 mg/dL to 98.5 +/- 23.01 mg/dL (P < 0.001), respectively. Conclusion. The oral administration of alpha-tocopherol in HD patients resulted in a significant decrease in the LDL(-), total cholesterol and LDL-C levels. This effect may favour a reduction in cardiovascular risk in these patients, but a larger study is required to confirm an effect in this clinical setting.
Resumo:
In each of the title compounds, R[Ph(Cl)C=(H)C]TeCl(2), R = nBu (1) and Ph (2), the primary geometry about the Te(IV) atom is a pseudo-trigonal-bipyramidal arrangement, with two Cl atoms in apical positions, and the lone pair of electrons and C atoms in the equatorial plane. As the Te(IV) is involved in two, an intra- and an inter-molecular, Te center dot center dot center dot Cl interactions the coordination geometry might be considered as a Psi-pentagonal bipyramid in each case. In addition, in (2) there is a hint of a Te center dot center dot center dot pi interaction (Te center dot center dot center dot C = 3.911(3) A). The key feature in the crystal structure of both compounds is the formation of supramolecular chains mediated by Te center dot center dot center dot Cl contacts. (1): C(12)H(15)Cl(3)Te, triclinic, P (1) over bar, a = 5.9471 (11), b = 10.7826(22), c = 11.7983(19) angstrom, alpha = 75.416(12), beta = 78.868(13), gamma = 80.902(14)degrees, V = 713.6(2) angstrom(3), Z = 2, R(1) = 0.021; (2): C14HIIC13Te, orthorhombic, Pcab, a=7.7189(10), b=17.415(2), c=21.568(3)angstrom, V = 2899.3(6) angstrom(3), Z = 8, R(1) = 0.027.
Resumo:
The present work investigates the mechanisms involved in the vasorelaxant effect of ent-16 alpha-methoxykauran-19-oic acid (KA-OCH(3)), a semi-synthetic derivative obtained from the kaurane-type diterpene ent-kaur-16-en-19-oic acid (kaurenoic acid). Vascular reactivity experiments were performed in aortic rings isolated from male Wistar rats using standard muscle bath procedures. The cytosolic calcium concentration ([Ca(2+)]c) was measured by confocal microscopy using the fluorescent probe Fluo-3 AM. Blood pressure measurements were performed in conscious rats. KA-OCH(3) (10,50 and 100 mu mol/l) inhibited phenylephrine-induced contraction in either endothelium-intact or endothelium-denuded rat aortic rings. KA-OCH(3) also reduced CaCl(2)-induced contraction in a Ca(2+)-free solution containing KCl (30 mmol/l) or phenylephrine (0.1 mu mol/l). KA-OCH(3) (0.1-300 mu mol/l) concentration-dependently relaxed endothelium-intact and endothelium-denuded aortas pre-contracted with either phenylephrine or KCl, to a greater extent than kaurenoic acid. Moreover, a Ca(2+) mobilisation study showed that KA-OCH(3) (100 mu mol/l) inhibited the increase in Ca(2+) concentration in smooth muscle and endothelial cells induced by phenylephrine or KCl. Pre-incubation of intact or denuded aortic rings with N(G)-nitro-L-arginine methyl ester (L-NAME, 100 mu mol/l), 7-nitroindazole (100 mu mol/l), wortmannin (0.5 mu mol/l) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ 1 mu mol/l) produced a rightward displacement of the KA-OCH(3) concentration-response curve. Intravenous administration of KA-OCH(3) (1-10 mg/kg) reduced mean arterial blood pressure in normotensive rats. Collectively, our results show that KA-OCH(3) induces vascular relaxation and hypotension. The mechanisms underlying the cardiovascular actions of KA-OCH(3) involve blockade of Ca(2+) influx and activation of the NO-cGMP pathway. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present study, an acidic PLA(2), designated BI-PLA(2), was isolated from Bothrops leucurus snake venom through two chromatographic steps: ion-exchange on CM-Sepharose and hydrophobic chromatography on Phenyl-Sepharose. Bl-PLA(2) was homogeneous on SDS-PAGE and when submitted to 2D electrophoresis the molecular mass was 15,000 Da and pl was 5.4. Its N-terminal sequence revealed a high homology with other Asp49 acidic PLA(2)s from snake venoms. Its specific activity was 159.9 U/mg and the indirect hemolytic activity was also higher than that of the crude venom. Bl-PLA(2) induced low myotoxic and edema activities as compared to those of the crude venom. Moreover, the enzyme was able to induce increments in IL-12p40, TNF-alpha, IL-1 beta and IL-6 levels and no variation of IL-8 and IL-10 in human PBMC stimulated in vitro, suggesting that Bl-PLA2 induces proinflammatory cytokine production by human mononuclear cells. Bothrops leucurus venom is still not extensively explored and knowledge of its components will contribute for a better understanding of its action mechanism. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Voltage-gated potassium channel toxins (KTxs) are basic short chain peptides comprising 23-43 amino acid residues that can be cross-linked by 3 or 4 disulfide bridges. KTxs are classified into four large families: alpha-, beta-, gamma- and kappa-KTx. These peptides display varying selectivity and affinity for K(v) channel subtypes. In this work, a novel toxin from the Tityus serrulatus venom was isolated, characterized and submitted to a wide electrophysiological screening on 5 different subtypes of Nay channels (Na(V)1.4; Na(V)1.5; Na(V)1.6; Na(V)1.8 and DmNa(V)1) and 12 different subtypes of Kv channels (K(V)1.1 - K(V)1.6; K(V)2.1; K(V)3.1; K(V)4.2; K(V)4.3; Shaker IR and ERG). This novel peptide, named Ts15, has 36 amino acids, is crosslinked by 3 disulfide bridges, has a molecular mass of 3956 Da and pI around 9. Electrophysiological experiments using patch clamp and the two-electrode voltage clamp techniques show that Ts15 preferentially blocks K(V)1.2 and K(V)1.3 channels with an IC(50) value of 196 +/- 25 and 508 +/- 67 nM, respectively. No effect on Na(V) channels was observed, at all tested concentrations. Since Ts15 shows low amino acid identity with other known KTxs, it was considered a bona fide novel type of scorpion toxin. Ts15 is the unique member of the new alpha-Ktx21 subfamily and therefore was classified as alpha-Ktx21.1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The perivascular nerve network expresses a Ca(2+) receptor that is activated by high extracellular Ca(2+) concentrations and causes vasorelaxation in resistance arteries. We have verified the influence of perivascular nerve fibers on the Ca(2+)-induced relaxation in aortic rings. To test our hypothesis, either pre-contracted aortas isolated from rats after sensory denervation with capsaicin or aortic rings acutely denervated with phenol were stimulated to relax with increasing extracellular Ca(2+) concentration. We also studied the role of the endothelium on the Ca(2+)-induced relaxation, and we verified the participation of endothelial/nonendothelial nitric oxide and cyclooxygenise-arachidonic acid metabolites. Additionally, the role of the sarcoplasmic reticulum, K(+) channels and L-type Ca(2+) channels on the Ca(2+)-induced relaxation were evaluated. We have observed that the Ca(2+)-induced relaxation is completely nerve independent, and it is potentiated by endothelial nitric oxide (NO). In endothelium-denuded aortic rings, indomethacin and AH6809 (PGF(2 alpha) receptor antagonist) enhance the relaxing response to Ca(2+). This relaxation is inhibited by thapsigargin and verapamil, while was not altered by tetraethylammonium. In conclusion, we have shown that perivascular nervous fibers do not participate in the Ca(2+)-induced relaxation, which is potentiated by endothelial NO. In endothelium-denuded preparations, indomethacin and AH6809 enhance the relaxation induced by Ca(2+). The relaxing response to Call was impaired by verapamil and thapsigargin, revealing the importance of L-type Ca(2+) channels and sarcoplasmic reticulum in this response. (c) 2008 Elsevier Inc. All rights reserved.