967 resultados para All plastic clean surface pumped supply


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL) theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cyclic bending experiment is designed to investigate the interface fracture behaviour of a hard chromium coating on a ductile substrate with periodic surface hardened regions. The unique deflection pattern of the vertical cracks after they run through the coating and impinge at the interface is revealed experimentally. A simple double-layer elastic beam model is adopted to investigate the interfacial shear stresses analytically. A FE model is employed to compute the stresses of the tri-phase structure under a single round of bending, and to investigate the effect of the loading conditions on the deflection pattern of the vertical cracks at the interface. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pearson instability was suggested to discuss the onset of Marangoni convection in a liquid layer of large Prandtl number under an applied temperature difference perpendicular to the free surface in the microgravity environment. In this case, the temperature distribution on the curved free surface is nonuniform, and the thermocapillary convection is induced and coupled with the Marangoni convection. In the present paper the effect of volume ratio of the liquid layer on the critical Marangoni convection and the corresponding spatial variation of the convection structure in zero-gravity condition were numerically investigated by two-dimensional model. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using molecular dynamics simulations, we show that the mechanical deformation behaviors of single-crystalline nickel nanowires are quite different from their bulk counterparts. Correlation between the obtained stress-strain curves and the visualized defect evolution during deformation processes clearly demonstrates that a sequence of complex dislocation slip events results in a state of dislocation starvation, involving the nucleation and propagation of dislocations until they finally escape from the wires, so that the wires deform elastically until new dislocations are generated. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For surface modification of stamping dies, an inseparable two-dimensional binary-phase gratings is introduced to implement the wavefront transformation of high-power laser beams. The design and fabrication of the gratings are described in detail. Two-dimensional even sampling encoding scheme is adopted to overcome the limitations of conventional Dammann grating in the design of two-dimensional output patterns. High diffractive efficiency (>70%) can be achieved through the transformation of the Gaussian laser beam into several kinds of two-dimensional arrays in focal plan. The application of the binary-phase gratings in the laser surface modification of ductile iron is investigated, and the results show that the hardness and the wear resistance of the sample surface were improved significantly by using the binary-phase gratings. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic nanowires have many attractive properties such as ultra-high yield strength and large tensile elongation. However, recent experiments show that metallic nanowires often contain grain boundaries, which are expected to significantly affect mechanical properties. By using molecular dynamics simulations, here, we demonstrate that polycrystalline Cu nanowires exhibit tensile deformation behavior distinctly different from their single-crystal counterparts. A significantly lowered yield strength was observed as a result of dislocation emission from grain boundaries rather than from free surfaces, despite of the very high surface to volume ratio. Necking starts from the grain boundary followed by fracture, resulting in reduced tensile ductility. The high stresses found in the grain boundary region clearly play a dominant role in controlling both inelastic deformation and fracture processes in nanoscale objects. These findings have implications for designing stronger and more ductile structures and devices on nanoscale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper combines the four-point bending test, SEM and finite element method to study the interface fracture property of PEO coatings on aluminum alloy. The interface failure mode of the coating on the compression side is revealed. The ceramic coating crack firstly along the 45 degrees to the interface, then the micro crack in the coating deduces the interface crack. The plastic deformation observed by SEM shows excellent adhesion property between the coating and substrate. The plastic deformation in the substrate is due to the interfacial crack extension, so the interface crack mode of PEO coatings is ductile crack. The results of FEM show that the compression strength is about 600 MPa. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resumen: Los materiales plásticos utilizados en la industria del embalaje y transporte de mercaderías familiares e industriales, presentan numerosas ventajas que los han puesto en su lugar durante los últimos 50 años. En la actualidad, son miles de millones de toneladas anuales de bolsas o embalajes de polietileno, las que diariamente se producen, se usan, se recuperan (en muy pequeña parte) y son finalmente dispuestas, quemadas o literalmente arrojadas al medio ambiente. La alta estabilidad química o la muy baja tasa de degradación, hace que estos residuos perduren en el medio - en la mayoría de los casos por más de 100 años- dependiendo las condiciones ambientales locales. Hace pocos años, se adaptaron conocimientos científicos a esta problemática, y de ello nacieron dos formas de atacar la eliminación del plástico como desecho (más allá del reciclado y uso racional): por un lado, la utilización de bioplásticos con propiedades biodegradables; y por otro, el agregado de aditivos pro-degradantes a plásticos convencionales. El presente trabajo, tiene por objeto tomar a esta última herramienta, sobre la cual se han comenzado a estudiar los mecanismos químicos por los cuales cumplen su función, evaluándolos en distintas condiciones aceleradas de laboratorio. De esta manera, se caracterizaron velocidades de degradación abiótica mediante envejecimientos acelerados con radiación ultravioleta y térmica, para films de polietileno aditivados con un compuesto oxodegradante comercial. Se estudiaron distintas concentraciones de aditivo en el polímero, en función del tiempo de envejecimiento. Las caracterizaciones incluyeron análisis mecánico, análisis térmico diferencial, espectroscopía de absorción infrarroja y de Absorción Atómica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface plasmon resonance (SPR) technology and the Biacore biosensor have been widely used to measure the kinetics of biomolecular interactions in the fluid phase. In the past decade, the assay was further extended to measure reaction kinetics when two counterpart molecules are anchored on apposed surfaces. However, the cell binding kinetics has not been well quantified. Here we report development of a cellular kinetic model, combined with experimental procedures for cell binding kinetic measurements, to predict kinetic rates per cell. Human red blood cells coated with bovine serum albumin and anti-BSA monoclonal antibodies (mAbs) immobilized on the chip were used to conduct the measurements. Sensor-grams for BSA-coated RBC binding onto and debinding from the anti-BSA mAb-immobilized chip were obtained using a commercial Biacore 3000 biosensor, and analyzed with the cellular kinetic model developed. Not only did the model fit the data well, but it also predicted cellular on and off-rates as well as binding affinities from curve fitting. The dependence of flow duration, flow rate, and site density of BSA on binding kinetics was tested systematically, which further validated the feasibility and reliability of the new approach. Crown copyright (c) 2008 Published by Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized plane strain JKR model is established for non-slipping adhesive contact between an elastic transversely isotropic cylinder and a dissimilar elastic transversely isotropic half plane, in which a pulling force acts on the cylinder with the pulling direction at an angle inclined to the contact interface. Full-coupled solutions are obtained through the Griffith energy balance between elastic and surface energies. The analysis shows that, for a special case, i.e., the direction of pulling normal to the contact interface, the full-coupled solution can be approximated by a non-oscillatory one, in which the critical pull-off force, pull-off contact half-width and adhesion strength can be expressed explicitly. For the other cases, i.e., the direction of pulling inclined to the contact interface, tangential tractions have significant effects on the pull-off process, it should be described by an exact full-coupled solution. The elastic anisotropy leads to an orientation-dependent pull-off force and adhesion strength. This study could not only supply an exact solution to the generalized JKR model of transversely isotropic materials, but also suggest a reversible adhesion sensor designed by transversely isotropic materials, such as PZT or fiber-reinforced materials with parallel fibers. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation behavior and the effect of the loading rate on the plastic deformation features in (numbers indicate at.%) Ce60Al15Cu10Ni15, Ce65Al10Cu10Ni10Nb5, Ce68Al10Cu20Nb2, and Ce70Al10Cu20 bulk metallic glasses (BMGs) were investigated through nanoindentation. The load-displacement (P-h) curves of Ce65Al10Cu10Ni10Nb5, Ce68Al10Cu2, and Ce70Al10Cu20 BMGs exhibited a continuous plastic deformation at all studied loading rate. Whereas, the P-h curves of Ce60Al15Cu10Ni15 BMG showed a quite unique feature, i.e. homogeneous plastic deformation at low loading rates, and a distinct serrated flow at high strain rates. Moreover, a creep deformation during the load holding segment was observed for the four Ce-based BMGs at room temperature. The mechanism for the appearance of the "anomalous" plastic deformation behavior in the Ce-based BMGs was discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The competitive adsorption of collagen and bovine serum albumin (BSA) on surfaces with varied wettability was investigated with imaging ellipsometry, and ellipsometry. Silane modified silicon surfaces were used as substrates. The results showed that surface wettability had an important effect on protein competitive adsorption. With the decrease of surface wettability, the adsorption of collagen from the mixture solution of collagen and BSA decreased, while the adsorption of BSA increased. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thoroughly understanding AFM tip-surface interactions is crucial for many experimental studies and applications. It is important to realize that despite its simple appearance, the system of tip and sample surface involves multiscale interactions. In fact, the system is governed by a combination of molecular force (like the van der Waals force), its macroscopic representations (such as surface force) and gravitational force (a macroscopic force). Hence, in the system, various length scales are operative, from sub-nanoscale (at the molecular level) to the macroscopic scale. By integrating molecular forces into continuum equations, we performed a multiscale analysis and revealed the nonlocality effect between a tip and a rough solid surface and the mechanism governing liquid surface deformation and jumping. The results have several significant implications for practical applications. For instance, nonlocality may affect the measurement accuracy of surface morphology. At the critical state of liquid surface jump, the ratio of the gap between a tip and a liquid dome (delta) over the dome height (y(o)) is approximately (n-4) (for a large tip), which depends on the power law exponent n of the molecular interaction energy. These findings demonstrate that the multiscale analysis is not only useful but also necessary in the understanding of practical phenomena involving molecular forces. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic deformation behaviors of Zr52.5Al10Ni10Cu15Be12.5, Mg65Cu25Gd10 and Pd43Ni10Cu27P20 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, macroindentation and uniaxial compression. The significant difference in plastic deformation behavior cannot be correlated to the Poisson's ratio or the ratio of shear modulus to bulk modulus of the three BMGs, but can be explained by the free volume model. It is shown that the nucleation of local shear band is easy and multiple shear bands can be activated in the Zr52.5Al10Ni10Cu15Be12.5 alloy, which exhibits a distinct plastic strain during uniaxial compression and less serrated flow during nanoindentation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the production of a new technique that can offer both good formability and high image clarity for texturing metal sheet, laser-textured sheet has attracted the attention of many manufacturers and users. Among the many subjects to be studied, plastic instability behaviour of the laser-textured sheet is one of most important to understand its ability in extending material ductility and to appropriately control this technique. Experimental investigations are carried out in this paper to study the macroscopic behaviour and microstructural mechanism of the laser-textured sheet, and comparison is made with the normal sheet taken from the same coil of metal sheet. It is demonstrated that, the difference in the behaviour of plastic instability obviously shows tendency to delay strain localization and the onset of thickness necking. Shear banding and internal void damage are spread to a much wider region in the sheet being laser-textured. The prestrained microcraters enforced on the surface of the textured sheet act as hardening spots, which are likely to share out deformation and inhibit the increasing rate of voiding, and eventually favouring the ductility of the material used.