1000 resultados para Algoritmos de búsqueda
Resumo:
En mi búsqueda acerca del tema de sexualidad, más allá de la visión del Estado nacional, los discursos desde la medicina, los medios de comunicación y el contexto religioso, encontré un espacio no hegemónico de educación, un espacio que se inserta en una "espiritual red"; el ejemplo de la espiritual que abordaré, es la neoindianidad, donde el sincretismo y lo híbrido surge a partir de la fusión de corrientes filosóficas y espirituales. Se pretende relatar parte de la experiencia y (re)significado de la sexualidad de hombres y mujeres a partir de las concepciones y discursos de las "abuelas" que dirigieron la práctica-ritual en Guadalajara, México. Ya quela escuela no es el único espacio para formar identidad sexual y concepciones de formas vivibles de la sexualidad, ¿cómo se construye el cuerpo en contextos de múltiples tradiciones religiosas, manifestaciones y diversos saberes? Por otro lado se proyecta hablar de la perspectiva emocional, espiritual y religiosa reconfigurada, desde donde se aborda el tema de lo sagrado femenino y masculino en la búsqueda de visión, que implica a las mujeres y hombres la toma de conciencia particular acerca de sus cuerpos y sexualidad
Resumo:
Es posible afirmar que la narrativa escrita en Argentina en las últimas décadas del siglo XX -más precisamente, después de la Dictadura Militar-, y en lo que va del XXI, puede estar inscripta en el marco de una crisis de la representación realista, en el ámbito de manifestación de un conjunto de tendencias estéticas que trabajan sobre problemas constructivos de identidad y de alteridad, de emergencia de discursos y de relación entre realidad y literatura, entre otros problema del género. Narrativa muy diversa que muestra la pluralidad genérica, un abanico de estilos escriturales -el policial, el ensayo, la novela testimonial y la literatura de "versiones", entre otros hechos de lenguaje-, a los que se suma la tendencia a la crítica al presente, a la complejidad de lo contado y a la necesidad de subvertir el discurso único y hegemónico del autoritarismo. Escritura donde es posible observar la desaparición de las utopías realistas clásicas en pro de privilegiar ciertos usos del lenguaje. Así, es posible detectar la aparición de un "nuevo realismo" ficcional acorde con la historia vivida y padecida en la Argentina en los tiempos aciagos de la Dictadura Militar. La novela de Félix Bruzzone Los topos, recientemente publicada -en el 2008-, muestra una nueva realidad: la de un autor que es hijo de desaparecidos. Es la intención en esta ponencia elucidar el quiebre y la aparición de una nueva generación literaria transgresora, que se apropia de una variedad de discursos heredados, acerca de la historia nacional reciente. Hay una vuelta de tuerca de la historia, del relato del realismo epocal que poseen todos los pueblos del universo, que quiere escribirse para permanecer como alegoría estética y como un testimonio de las consecuencias de políticas equivocadas.
Resumo:
Fil: Nella, Jorge Daniel. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Este trabajo analiza diversos aspectos sobre la formación y el desarrollo de la filial de Abuelas de Plaza de Mayo en la ciudad de Rosario, la cual tiene la particularidad de haber sido fundada y sostenida únicamente durante mucho tiempo por su fundadora, Darwinia Galicchio, quien recuperó a su nieta Ximena en un lento proceso que comenzó en el año 1984. Además, la formación de Abuelas en Rosario ha sido casi paralela a la de la delegación de Madres de Plaza de Mayo en dicha ciudad. Ambas organizaciones tuvieron su origen en Familiares de Detenidos y Desaparecidos por Razones Políticas y Gremiales de Rosario. Darwinia integró los tres organismos. En este marco, el artículo se propone indagar este caso en particular desde la perspectiva regional pero a la vez incorporando la dimensión de la historia de vida
Resumo:
Fil: Bisso, Andrés. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
El objetivo de este trabajo es articular a partir de la novela Austerlitz, de W.G. Sebald los ejes argumentativo y temporal. Se plantea la idea de la identidad como constructo artificial cimentado sobre la base de recuerdos, los cuales son entrelazados a partir de recursos literarios tales como la fotografía y el discurso libre indirecto
Resumo:
Es conocido el hecho de que Proust se debate entre ser filósofo o artista (Proust, 1976), de allí que en la lectura de la obra artística proustiana puedan reconocerse y verse expresados diversas teorías filosóficas. En este trabajo proponemos tomar el problema de la identidad personal y la identidad social en la novela En busca del Tiempo Perdido en relación al problema del Kitsch. Como lectores de la novela podemos observar que la identidad que adquieren los personajes de Proust no es más que ilusoria, carente de esencia, lo cual a nuestro modo de ver lleva a la necesidad de los individuos -tanto en relación a sí mismos como en relación a los otros- a construirse personalidades cerradas, inamovibles, en fin a intentar a fijarse una esencia. Esto último según Poulet, por la angustia que encierra la nada. Sugerimos por último, que este procedimiento es análogo a aspectos del Kitsch, según lo entiende Hermann Broch. En efecto para Broch, la existencia de un sistema de valores del Kitsch depende en parte de la angustia de la muerte, la nada por excelencia, que lleva a los hombres a refugiarse en "la seguridad del ser"
Resumo:
En el artículo desarrollaré algunos avances realizados en una investigación etnográfica sobre un grupo de danza de raíz afro en la ciudad de La Plata, en el marco de la elaboración de la Tesina de grado. La investigación se centra en un solo grupo en profundidad, tomado como espacio de sociabilidad y productor de prácticas y representaciones, con el objetivo de poder acceder a los sentidos del cuerpo, de la danza y de la vida que allí se producen. Describiré la composición del grupo y sus características, así como las clases que brindan y cómo se desarrollan. A su vez, realizaré un análisis preliminar sobre los sentidos nativos otorgados a la práctica de la danza, que he definido como la búsqueda interior, el disfrute y la liberación, y la danza como terapia; todos entrelazados por la grupalidad. Con la intención de realizar un análisis de y desde los cuerpos, para que los mismos no sean sólo el objeto de investigación sino también herramienta de conocimiento, mi propio cuerpo como investigadora se encuentra involucrado, en la convicción de que esta metodología de abordaje permite una creciente comprensión de las significaciones puestas en juego
Resumo:
ste trabajo presenta un análisis comparativo entre tres algoritmos de aprendizaje diferentes basados en Árboles de Decisión (C4.5) y Redes Neuronales Artificiales (Perceptrón Multicapa MLP y Red Neuronal de Regresión General GRNN) que han sido implementados con el objetivo de predecir los resultados de la rehabilitación cognitiva de personas con daño cerebral adquirido. En el análisis se han incluido datos demográficos del paciente, el perfil de afectación y los resultados provenientes de las tareas de rehabilitación ejecutadas por los pacientes. Los modelos han sido evaluados utilizando la base de datos del Institut Guttmann. El rendimiento de los algoritmos se midió a través del análisis de la especificidad, sensibilidad y exactitud en la precisión y el análisis de la matriz de confusión. Los resultados muestran que la implementación del C4.5 alcanzó una especificidad, sensibilidad y exactitud en la precisión del 98.43%, 83.77% y 89.42% respectivamente. El rendimiento del C4.5 fue significativamente superior al obtenido por el Perceptrón Multicapa y la Red de Regresión General.
Resumo:
El pórfido de cobre Lara se encuentra en el flanco pacífico de la Cordillera Occidental de los Andes del Perú, dentro de la faja metalogenética Cu-Mo del Cretáceo superior. Está alineado con los pórfidos de cobre del Paleoceno-Eoceno más grandes del sur del Perú: Toquepala, Cuajone y Quellaveco. Geográficamente, esta localizado al sureste de la costa del Perú, a 400 km de Lima. Se ubica en la provincia de Laramate del departamento de Ayacucho, a 40 km del poblado de Palpa que se encuentra en la Panamericana Sur. Su elevación es de 1850 msnm. Los objetivos de este estudio fueron: caracterizar las inclusiones de fluidos de los eventos hidrotermales relacionados con la mineralización económica, estudiar la naturaleza de los fluidos hidrotermales que formaron la alteración y mineralización, determinar la temperatura de formación de los fluidos mineralizantes y establecer una relación entre las inclusiones de fluidos con el tonelaje y la edad de mineralización de los pórfidos de cobre.
Resumo:
Esta Tesis aborda el diseño e implementación de aplicaciones en el campo de procesado de señal, utilizando como plataforma los dispositivos reconfigurables FPGA. Esta plataforma muestra una alta capacidad de lógica, e incorpora elementos orientados al procesado de señal, que unido a su relativamente bajo coste, la hacen ideal para el desarrollo de aplicaciones de procesado de señal cuando se requiere realizar un procesado intensivo y se buscan unas altas prestaciones. Sin embargo, el coste asociado al desarrollo en estas plataformas es elevado. Mientras que el aumento en la capacidad lógica de los dispositivos FPGA permite el desarrollo de sistemas completos, los requisitos de altas prestaciones obligan a que en muchas ocasiones se deban optimizar operadores a muy bajo nivel. Además de las restricciones temporales que imponen este tipo de aplicaciones, también tienen asociadas restricciones de área asociadas al dispositivo, lo que obliga a evaluar y verificar entre diferentes alternativas de implementación. El ciclo de diseño e implementación para estas aplicaciones se puede prolongar tanto, que es normal que aparezcan nuevos modelos de FPGA, con mayor capacidad y mayor velocidad, antes de completar el sistema, y que hagan a las restricciones utilizadas para el diseño del sistema inútiles. Para mejorar la productividad en el desarrollo de estas aplicaciones, y con ello acortar su ciclo de diseño, se pueden encontrar diferentes métodos. Esta Tesis se centra en la reutilización de componentes hardware previamente diseñados y verificados. Aunque los lenguajes HDL convencionales permiten reutilizar componentes ya definidos, se pueden realizar mejoras en la especificación que simplifiquen el proceso de incorporar componentes a nuevos diseños. Así, una primera parte de la Tesis se orientará a la especificación de diseños basada en componentes predefinidos. Esta especificación no sólo busca mejorar y simplificar el proceso de añadir componentes a una descripción, sino que también busca mejorar la calidad del diseño especificado, ofreciendo una mayor posibilidad de configuración e incluso la posibilidad de informar de características de la propia descripción. Reutilizar una componente ya descrito depende en gran medida de la información que se ofrezca para su integración en un sistema. En este sentido los HDLs convencionales únicamente proporcionan junto con la descripción del componente la interfaz de entrada/ salida y un conjunto de parámetros para su configuración, mientras que el resto de información requerida normalmente se acompaña mediante documentación externa. En la segunda parte de la Tesis se propondrán un conjunto de encapsulados cuya finalidad es incorporar junto con la propia descripción del componente, información que puede resultar útil para su integración en otros diseños. Incluyendo información de la implementación, ayuda a la configuración del componente, e incluso información de cómo configurar y conectar al componente para realizar una función. Finalmente se elegirá una aplicación clásica en el campo de procesado de señal, la transformada rápida de Fourier (FFT), y se utilizará como ejemplo de uso y aplicación, tanto de las posibilidades de especificación como de los encapsulados descritos. El objetivo del diseño realizado no sólo mostrará ejemplos de la especificación propuesta, sino que también se buscará obtener una implementación de calidad comparable con resultados de la literatura. Para ello, el diseño realizado se orientará a su implementación en FPGA, aprovechando tanto los elementos lógicos generalistas como elementos específicos de bajo nivel disponibles en estos dispositivos. Finalmente, la especificación de la FFT obtenida se utilizará para mostrar cómo incorporar en su interfaz información que ayude para su selección y configuración desde fases tempranas del ciclo de diseño. Abstract This PhD. thesis addresses the design and implementation of signal processing applications using reconfigurable FPGA platforms. This kind of platform exhibits high logic capability, incorporates dedicated signal processing elements and provides a low cost solution, which makes it ideal for the development of signal processing applications, where intensive data processing is required in order to obtain high performance. However, the cost associated to the hardware development on these platforms is high. While the increase in logic capacity of FPGA devices allows the development of complete systems, high-performance constraints require the optimization of operators at very low level. In addition to time constraints imposed by these applications, Area constraints are also applied related to the particular device, which force to evaluate and verify a design among different implementation alternatives. The design and implementation cycle for these applications can be tedious and long, being therefore normal that new FPGA models with a greater capacity and higher speed appear before completing the system implementation. Thus, the original constraints which guided the design of the system become useless. Different methods can be used to improve the productivity when developing these applications, and consequently shorten their design cycle. This PhD. Thesis focuses on the reuse of hardware components previously designed and verified. Although conventional HDLs allow the reuse of components already defined, their specification can be improved in order to simplify the process of incorporating new design components. Thus, a first part of the PhD. Thesis will focus on the specification of designs based on predefined components. This specification improves and simplifies the process of adding components to a description, but it also seeks to improve the quality of the design specified with better configuration options and even offering to report on features of the description. Hardware reuse of a component for its integration into a system largely depends on the information it offers. In this sense the conventional HDLs only provide together with the component description, the input/output interface and a set of parameters for its configuration, while other information is usually provided by external documentation. In the second part of the Thesis we will propose a formal way of encapsulation which aims to incorporate with the component description information that can be useful for its integration into other designs. This information will include features of the own implementation, but it will also support component configuration, and even information on how to configure and connect the component to carry out a function. Finally, the fast Fourier transform (FFT) will be chosen as a well-known signal processing application. It will be used as case study to illustrate the possibilities of proposed specification and encapsulation formalisms. The objective of the FFT design is not only to show practical examples of the proposed specification, but also to obtain an implementation of a quality comparable to scientific literature results. The design will focus its implementation on FPGA platforms, using general logic elements as base of the implementation, but also taking advantage of low-level specific elements available on these devices. Last, the specification of the obtained FFT will be used to show how to incorporate in its interface information to assist in the selection and configuration process early in the design cycle.
Resumo:
Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.
Resumo:
Con el surgir de los problemas irresolubles de forma eficiente en tiempo polinomial en base al dato de entrada, surge la Computación Natural como alternativa a la computación clásica. En esta disciplina se trata de o bien utilizar la naturaleza como base de cómputo o bien, simular su comportamiento para obtener mejores soluciones a los problemas que los encontrados por la computación clásica. Dentro de la computación natural, y como una representación a nivel celular, surge la Computación con Membranas. La primera abstracción de las membranas que se encuentran en las células, da como resultado los P sistemas de transición. Estos sistemas, que podrían ser implementados en medios biológicos o electrónicos, son la base de estudio de esta Tesis. En primer lugar, se estudian las implementaciones que se han realizado, con el fin de centrarse en las implementaciones distribuidas, que son las que pueden aprovechar las características intrínsecas de paralelismo y no determinismo. Tras un correcto estudio del estado actual de las distintas etapas que engloban a la evolución del sistema, se concluye con que las distribuciones que buscan un equilibrio entre las dos etapas (aplicación y comunicación), son las que mejores resultados presentan. Para definir estas distribuciones, es necesario definir completamente el sistema, y cada una de las partes que influyen en su transición. Además de los trabajos de otros investigadores, y junto a ellos, se realizan variaciones a los proxies y arquitecturas de distribución, para tener completamente definidos el comportamiento dinámico de los P sistemas. A partir del conocimiento estático –configuración inicial– del P sistema, se pueden realizar distribuciones de membranas en los procesadores de un clúster para obtener buenos tiempos de evolución, con el fin de que la computación del P sistema sea realizada en el menor tiempo posible. Para realizar estas distribuciones, hay que tener presente las arquitecturas –o forma de conexión– de los procesadores del clúster. La existencia de 4 arquitecturas, hace que el proceso de distribución sea dependiente de la arquitectura a utilizar, y por tanto, aunque con significativas semejanzas, los algoritmos de distribución deben ser realizados también 4 veces. Aunque los propulsores de las arquitecturas han estudiado el tiempo óptimo de cada arquitectura, la inexistencia de distribuciones para estas arquitecturas ha llevado a que en esta Tesis se probaran las 4, hasta que sea posible determinar que en la práctica, ocurre lo mismo que en los estudios teóricos. Para realizar la distribución, no existe ningún algoritmo determinista que consiga una distribución que satisfaga las necesidades de la arquitectura para cualquier P sistema. Por ello, debido a la complejidad de dicho problema, se propone el uso de metaheurísticas de Computación Natural. En primer lugar, se propone utilizar Algoritmos Genéticos, ya que es posible realizar alguna distribución, y basada en la premisa de que con la evolución, los individuos mejoran, con la evolución de dichos algoritmos, las distribuciones también mejorarán obteniéndose tiempos cercanos al óptimo teórico. Para las arquitecturas que preservan la topología arbórea del P sistema, han sido necesarias realizar nuevas representaciones, y nuevos algoritmos de cruzamiento y mutación. A partir de un estudio más detallado de las membranas y las comunicaciones entre procesadores, se ha comprobado que los tiempos totales que se han utilizado para la distribución pueden ser mejorados e individualizados para cada membrana. Así, se han probado los mismos algoritmos, obteniendo otras distribuciones que mejoran los tiempos. De igual forma, se han planteado el uso de Optimización por Enjambres de Partículas y Evolución Gramatical con reescritura de gramáticas (variante de Evolución Gramatical que se presenta en esta Tesis), para resolver el mismo cometido, obteniendo otro tipo de distribuciones, y pudiendo realizar una comparativa de las arquitecturas. Por último, el uso de estimadores para el tiempo de aplicación y comunicación, y las variaciones en la topología de árbol de membranas que pueden producirse de forma no determinista con la evolución del P sistema, hace que se deba de monitorizar el mismo, y en caso necesario, realizar redistribuciones de membranas en procesadores, para seguir obteniendo tiempos de evolución razonables. Se explica, cómo, cuándo y dónde se deben realizar estas modificaciones y redistribuciones; y cómo es posible realizar este recálculo. Abstract Natural Computing is becoming a useful alternative to classical computational models since it its able to solve, in an efficient way, hard problems in polynomial time. This discipline is based on biological behaviour of living organisms, using nature as a basis of computation or simulating nature behaviour to obtain better solutions to problems solved by the classical computational models. Membrane Computing is a sub discipline of Natural Computing in which only the cellular representation and behaviour of nature is taken into account. Transition P Systems are the first abstract representation of membranes belonging to cells. These systems, which can be implemented in biological organisms or in electronic devices, are the main topic studied in this thesis. Implementations developed in this field so far have been studied, just to focus on distributed implementations. Such distributions are really important since they can exploit the intrinsic parallelism and non-determinism behaviour of living cells, only membranes in this case study. After a detailed survey of the current state of the art of membranes evolution and proposed algorithms, this work concludes that best results are obtained using an equal assignment of communication and rules application inside the Transition P System architecture. In order to define such optimal distribution, it is necessary to fully define the system, and each one of the elements that influence in its transition. Some changes have been made in the work of other authors: load distribution architectures, proxies definition, etc., in order to completely define the dynamic behaviour of the Transition P System. Starting from the static representation –initial configuration– of the Transition P System, distributions of membranes in several physical processors of a cluster is algorithmically done in order to get a better performance of evolution so that the computational complexity of the Transition P System is done in less time as possible. To build these distributions, the cluster architecture –or connection links– must be considered. The existence of 4 architectures, makes that the process of distribution depends on the chosen architecture, and therefore, although with significant similarities, the distribution algorithms must be implemented 4 times. Authors who proposed such architectures have studied the optimal time of each one. The non existence of membrane distributions for these architectures has led us to implement a dynamic distribution for the 4. Simulations performed in this work fix with the theoretical studies. There is not any deterministic algorithm that gets a distribution that meets the needs of the architecture for any Transition P System. Therefore, due to the complexity of the problem, the use of meta-heuristics of Natural Computing is proposed. First, Genetic Algorithm heuristic is proposed since it is possible to make a distribution based on the premise that along with evolution the individuals improve, and with the improvement of these individuals, also distributions enhance, obtaining complexity times close to theoretical optimum time. For architectures that preserve the tree topology of the Transition P System, it has been necessary to make new representations of individuals and new algorithms of crossover and mutation operations. From a more detailed study of the membranes and the communications among processors, it has been proof that the total time used for the distribution can be improved and individualized for each membrane. Thus, the same algorithms have been tested, obtaining other distributions that improve the complexity time. In the same way, using Particle Swarm Optimization and Grammatical Evolution by rewriting grammars (Grammatical Evolution variant presented in this thesis), to solve the same distribution task. New types of distributions have been obtained, and a comparison of such genetic and particle architectures has been done. Finally, the use of estimators for the time of rules application and communication, and variations in tree topology of membranes that can occur in a non-deterministic way with evolution of the Transition P System, has been done to monitor the system, and if necessary, perform a membrane redistribution on processors to obtain reasonable evolution time. How, when and where to make these changes and redistributions, and how it can perform this recalculation, is explained.