940 resultados para Aerodynamic load
Resumo:
Computational modelling is becoming ever more important for obtaining regulatory approval for new medical devices. An accepted approach is to infer performance in a population from an analysis conducted for an idealised or ‘average’ patient; we present here a method for predicting the performance of an orthopaedic implant when released into a population—effectively simulating a clinical trial. Specifically we hypothesise that an analysis based on a method for predicting the performance in a population will lead to different conclusions than an analysis based on an idealised or ‘average’ patient. To test this hypothesis we use a finite element model of an intramedullary implant in a bone whose size and remodelling activity is different for each individual in the population. We compare the performance of a low Young’s modulus implant (View the MathML source) to one with a higher Young’s modulus (200 GPa). Cyclic loading is applied and failure is assumed when the migration of the implant relative to the bone exceeds a threshold magnitude. The analysis for an idealised of ‘average’ patient predicts that the lower modulus device survives longer whereas the analysis simulating a clinical trial predicts no statistically-significant tendency (p=0.77) for the low modulus device to perform better. It is concluded that population-based simulations of implant performance–simulating a clinical trial–present a very valuable opportunity for more realistic computational pre-clinical testing of medical devices.
Resumo:
The objective of this study was to determine the sedative load and use of sedative and psychotropic medications among older people with dementia living in (residential) care homes.
Resumo:
We study the scaling behaviors of a time-dependent fiber-bundle model with local load sharing. Upon approaching the complete failure of the bundle, the breaking rate of fibers diverges according to r(t)proportional to(T-f-t)(-xi) where T-f is the lifetime of the bundle and xi approximate to 1.0 is a universal scaling exponent. The average lifetime of the bundle [T-f] scales with the system size as N-delta, where delta depends on the distribution of individual fiber as well as the breakdown rule. [S1063-651X(99)13902-3].
Resumo:
We develop a recursion-relation approach for calculating the failure probabilities of a fiber bundle with local load sharing. This recursion relation is exact, so it provides a way to test the validity of the various approximate methods. Applying the exact calculation to uniform and Weibull threshold distributions, we find that the most probable failure load coincides with the average strength as the size of the system N --> infinity.
Resumo:
A critical load x(c) is introduced into the fiber-bundle model with local load-sharing. The critical load is defined as the average load per fiber that causes the final complete failure. It is shown that x(c) --> 0 when the size of the system N --> infinity. A power law for the burst-size distribution, D(DELTA) is-proportional-to DELTA(-xi) is approximately correct. The exponent xi is not universal, since it depends on the strength distribution as well as the size of the system.
Resumo:
Genetics plays a crucial role in human aging with up to 30% of those living to the mid-80s being determined by genetic variation. Survival to older ages likely entails an even greater genetic contribution. There is increasing evidence that genes implicated in age-related diseases, such as cancer and neuronal disease, play a role in affecting human life span. We have selected the 10 most promising late-onset Alzheimer's disease (LOAD) susceptibility genes identified through several recent large genome-wide association studies (GWAS). These 10 LOAD genes (APOE, CLU, PICALM, CR1, BIN1, ABCA7, MS4A6A, CD33, CD2AP, and EPHA1) have been tested for association with human aging in our dataset (1385 samples with documented age at death [AAD], age range: 58-108 years; mean age at death: 80.2) using the most significant single nucleotide polymorphisms (SNPs) found in the previous studies. Apart from the APOE locus (rs2075650) which showed compelling evidence of association with risk on human life span (p = 5.27 × 10(-4)), none of the other LOAD gene loci demonstrated significant evidence of association. In addition to examining the known LOAD genes, we carried out analyses using age at death as a quantitative trait. No genome-wide significant SNPs were discovered. Increasing sample size and statistical power will be imperative to detect genuine aging-associated variants in the future. In this report, we also discuss issues relating to the analysis of genome-wide association studies data from different centers and the bioinformatic approach required to distinguish spurious genome-wide significant signals from real SNP associations.
Resumo:
A criterion is derived for delamination onset in transversely isotropic laminated plates under small mass, high velocity impact. The resulting delamination threshold load is about 21% higher than the corresponding quasi-static threshold load. A closed form approximation for the peak impact load is then used to predict the delamination threshold velocity. The theory is validated for a range of test cases by comparison with 3D finite element simulation using LS-DYNA and a newly developed interface element to model delamination onset and growth. The predicted delamination threshold loads and velocities are in very good agreement with the finite element simulations. Good agreement is also shown in a comparison with published experimental results. In contrast to quasi-static impacts, delamination growth occurs under a rapidly decreasing load. Inclusion of finite thickness effects and a proper description of the contact stiffness are found to be vital for accurate prediction of the delamination threshold velocity
Resumo:
The finite element method in conjunction with the Soutis-Fleck model is used to predict the residual strength after impact of a carbon-fibre reinforced plastic wingbox subjected to a cantilever type loading. The maximum stress failure criterion further validates the Soutis-Fleck model predictions. The Soutis-Fleck model predicts that the wingbox fails at a tip load of 99.2 kN, approximately 5.5% less than the experimental observation
Resumo:
Analysis and synthesis of the new Class-EF power amplifier (PA) are presented in this paper. The proposed circuit offers means to alleviate some of the major issues faced by existing Class-EF and Class-EF PAs, such as (1) substantial power losses due to parasitic resistance of the large inductor in the Class-EF load network, (2) unpredictable behaviour of practical lumped inductors and capacitors at harmonic frequencies, and (3) deviation from ideal Class-EF operation mode due to detrimental effects of device output inductance at high frequencies. The transmission-line load network of the Class-EF PA topology elaborated in this paper simultaneously satisfies the Class-EF optimum impedance requirements at fundamental frequency, second, and third harmonics as well as simultaneously providing matching to the circuit optimum load resistance for any prescribed system load resistance. Furthermore, an elegant solution using an open and short-circuit stub arrangement is suggested to overcome the problem encountered in the mm-wave IC realizations of the Class-EF PA load network due to lossy quarter-wave line. © 2010 IEICE Institute of Electronics Informati.
Resumo:
High thermal load appears at the blade tip and casing of a gas turbine engine. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, computational fluid dynamics tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (444 K) and high (800 K) inlet temperatures and nonuniform (parabolic) temperature profiles have been considered at a fixed rotor rotation speed (9500 rpm). The results showed that the change of flow properties at a higher inlet temperature yields significant variations in the leakage flow aerodynamics and heat transfer relative to the lower inlet temperature condition. Aerodynamic behavior of the tip leakage flow varies significantly with the distortion of turbine inlet temperature. For more realistic inlet condition, the velocity range is insignificant at all the time instants. At a high inlet temperature, reverse secondary flow is strongly opposed by the tip leakage flow and the heat transfer fluctuations are reduced greatly.
Resumo:
With the rapid expansion of the internet and the increasing demand on Web servers, many techniques were developed to overcome the servers' hardware performance limitation. Mirrored Web Servers is one of the techniques used where a number of servers carrying the same "mirrored" set of services are deployed. Client access requests are then distributed over the set of mirrored servers to even up the load. In this paper we present a generic reference software architecture for load balancing over mirrored web servers. The architecture was designed adopting the latest NaSr architectural style [1] and described using the ADLARS [2] architecture description language. With minimal effort, different tailored product architectures can be generated from the reference architecture to serve different network protocols and server operating systems. An example product system is described and a sample Java implementation is presented.