931 resultados para Adipose-tissue
Resumo:
Abstract The digital cushion is characterized as a modified subcutaneous tissue that absorbs the shock during gait, assists venous return of the hoof and supports a considerable part of body weight. Digital cushions have particular importance in the pathogenesis of the hoof, since they need to properly work in order to prevent compression and traumas in soft tissues. This study aimed to measure and determine how is the arrangement of these structures, and for this it was established the proportions of connective, adipose, vascular tissues and collagen fibers and collagen types found in palmar and plantar digital cushion of bovine using fore and hindlimbs of twelve adult zebu cattle of both sexes, 11 male and one female, with 269kg average carcass weight and without limb disorders. Fragments of cushions were subjected to conventional histology, cut to a thickness of 4µm and stained with Red Picrosirius. With digital optical microscope, the quantification of the connective tissue and differentiation of types of collagen used the Image Pro Plus® software, and of adipose and vascular tissue, the test point system. The mean and standard error were estimated with the GraphPad Prism 5.0 software, and then data were subjected to Kolmogorov-Smirnov normality test and Student's t-test with significance level set at 5% for determining the amount of different tissues between fore and hindlimbs of studied animals. In forelimbs the mean and standard error of the connective tissue proportion was 50.10%+1.54, of the adipose tissue was 21.34%+1.44, and of vascular tissue was 3.43%+0.28. Hindlimbs presented a proportion of connective tissue of 61.61%+1.47, 20.66%+1.53 of adipose tissue, and 3.06%+0.20 of vascular tissue. A significant difference (p<0.001) was detected in the connective tissue proportion between fore and hindlimbs. Types I and II collagen fibers have presented, respectively, a proportion of 31.89% and 3.9% in forelimbs and 34.05% and 1.78% in hindlimbs. According to the used methodology, digital cushions had a clear differentiation relative to adipose tissue between fore and hindlimbs.
Resumo:
The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms) have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.
Resumo:
This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL). Males (4 weeks old) from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group). CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks) caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A), were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05). Total liver protein decreased below the level seen in either pair-fed animals (group P) or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05), whereas gastrocnemius muscle protein was higher than the values normally described for control (C) animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05). Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05). This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05). Brown adipose tissue (BAT) cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05), was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05). The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.
Resumo:
Chemical modifications were used to identify some of the functionally important amino acid residues of the potato plant uncoupling protein (StUCP). The proton-dependent swelling of potato mitochondria in K+-acetate in the presence of linoleic acid and valinomycin was inhibited by mersalyl (Ki = 5 µM) and other hydrophilic SH reagents such as Thiolyte MB, iodoacetate and 5,5'-dithio-bis-(2-nitrobenzoate), but not by hydrophobic N-ethylmaleimide. This pattern of inhibition by SH reagents was similar to that of brown adipose tissue uncoupling protein (UCP1). As with UCP1, the arginine reagent 2,3-butadione, but not N-ethylmaleimide or other hydrophobic SH reagents, prevented the inhibition of StUCP-mediated transport by ATP in isolated potato mitochondria or with reconstituted StUCP. The results indicate that the most reactive amino acid residues in UCP1 and StUCP are similar, with the exception of N-ethylmaleimide-reactive cysteines in the purine nucleotide-binding site.
Resumo:
Stress hormones can alter metabolic functions in adipose tissue and liver, as well as the sensitivity of rat white adipocytes and rat atrial responses to ß-adrenergic agonists. In this study, we examined the effects of three daily footshock stress sessions on the plasma corticosterone, glucose, glycerol and triacylglycerol levels of fed, conscious male rats, and on the plasma glucose, glycerol and triacylglycerol levels of the same rats following iv infusions of ß-adrenergic agonists (isoproterenol: 0.4 nmol kg-1 min-1, noradrenaline: 5.0 µg kg-1 day-1, and BRL 37344 ([±]-[4-(2-[(2-[3-chlorophenyl]-2-hydroxyethyl)amino]propyl)phenoxy]acetic acid), a selective ß3-adrenoceptor agonist: 0.4 nmol kg-1 min-1). Plasma corticosterone levels increased significantly after each stress session, while triacylglycerol levels increased after the first session and glucose increased after the second and third sessions. Glycerol levels were unaltered after stress. These results suggest that repeated footshock stress may induce a metabolic shift from triacylglycerol biosynthesis to glucose release by hepatic tissue, with glycerol serving as one of the substrates in both pathways. Stressed rats were more sensitive to infusion of noradrenaline plus prazosin and to infusion of isoproterenol, with elevated plasma glucose, glycerol and triacylglycerol levels. The higher sensitivity of stressed rats to isoproterenol and noradrenaline was probably related to the permissive effect of plasma corticosterone. Only BRL 37344 increased plasma glycerol levels in stressed rats, probably because ß3-adrenoceptors are not involved in hepatic triacylglycerol synthesis, thus allowing glycerol to accumulate in plasma.
Resumo:
GLUT4 protein expression in white adipose tissue (WAT) and skeletal muscle (SM) was investigated in 2-month-old, 12-month-old spontaneously obese or 12-month-old calorie-restricted lean Wistar rats, by considering different parameters of analysis, such as tissue and body weight, and total protein yield of the tissue. In WAT, a ~70% decrease was observed in plasma membrane and microsomal GLUT4 protein, expressed as µg protein or g tissue, in both 12-month-old obese and 12-month-old lean rats compared to 2-month-old rats. However, when plasma membrane and microsomal GLUT4 tissue contents were expressed as g body weight, they were the same. In SM, GLUT4 protein content, expressed as µg protein, was similar in 2-month-old and 12-month-old obese rats, whereas it was reduced in 12-month-old obese rats, when expressed as g tissue or g body weight, which may play an important role in insulin resistance. Weight loss did not change the SM GLUT4 content. These results show that altered insulin sensitivity is accompanied by modulation of GLUT4 protein expression. However, the true role of WAT and SM GLUT4 contents in whole-body or tissue insulin sensitivity should be determined considering not only GLUT4 protein expression, but also the strong morphostructural changes in these tissues, which require different types of data analysis.
Abnormal subcellular distribution of GLUT4 protein in obese and insulin-treated diabetic female dogs
Resumo:
The GLUT4 transporter plays a key role in insulin-induced glucose uptake, which is impaired in insulin resistance. The objective of the present study was to investigate the tissue content and the subcellular distribution of GLUT4 protein in 4- to 12-year-old control, obese and insulin-treated diabetic mongrel female dogs (4 animals per group). The parametrial white adipose tissue was sampled and processed to obtain both plasma membrane and microsome subcellular fractions for GLUT4 analysis by Western blotting. There was no significant difference in glycemia and insulinemia between control and obese animals. Diabetic dogs showed hyperglycemia (369.9 ± 89.9 mg/dl). Compared to control, the plasma membrane GLUT4, reported per g tissue, was reduced by 55% (P < 0.01) in obese dogs, and increased by 30% (P < 0.05) in diabetic dogs, and the microsomal GLUT4 was increased by ~45% (P < 0.001) in both obese and diabetic animals. Considering the sum of GLUT4 measured in plasma membrane and microsome as total cellular GLUT4, percent GLUT4 present in plasma membrane was reduced by ~65% (P < 0.001) in obese compared to control and diabetic animals. Since insulin stimulates GLUT4 translocation to the plasma membrane, percent GLUT4 in plasma membrane was divided by the insulinemia at the time of tissue removal and was found to be reduced by 75% (P < 0.01) in obese compared to control dogs. We conclude that the insulin-stimulated translocation of GLUT4 to the cell surface is reduced in obese female dogs. This probably contributes to insulin resistance, which plays an important role in glucose homeostasis in dogs.
Resumo:
Vitamin D deficiency, observed mainly in the geriatric population, is responsible for loss of bone mass and increased risk of bone fractures. Currently, recommended doses of cholecalciferol are advised, but since there are few studies evaluating the factors that influence the serum levels of 25-hydroxyvitamin D (25(OH)D) following supplementation, we analyzed the relationship between the increase in serum 25(OH)D after supplementation and body fat. We studied a group of 42 homebound elderly subjects over 65 years old (31 women) in order to assess whether there is a need for adjustment of the doses of cholecalciferol administered to this group according to their adipose mass. Baseline measurements of 25(OH)D, intact parathyroid hormone and bone remodeling markers (osteocalcin and carboxy-terminal fraction of type 1 collagen) were performed. Percent body fat was measured by dual-energy X-ray absorptiometry. The patients were divided into three groups according to their percent body fat index and were treated with cholecalciferol, 7,000 IU a week, for 12 weeks. The increases in serum levels of 25(OH)D were similar for all groups, averaging 7.46 ng/mL (P < 0.05). It is noteworthy that this increase only shifted these patients from the insufficiency category to hypovitaminosis. Peak levels of 25(OH)D were attained after only 6 weeks of treatment. This study demonstrated that adipose tissue mass does not influence the elevation of 25(OH)D levels following vitamin D supplementation, suggesting that there is no need to adjust vitamin D dose according to body fat in elderly homebound individuals.
Resumo:
Trees produce an enormous amount of compounds that are still scantly utilized.However, the results obtained from structurally similar biochemicals suggest that wood-derived compounds could be used for the protection of health in various applications. Polyphenols, for instance, could be extracted from wood in high quantities. Similar polyphenols to those in wood include resveratrol, found in grapes, and secoisolariciresinol, present in flaxseeds. Their consumption has been inversely associated with the incidence of various diseases, especially certain cancers and obesity-related disorders. The aim of this study was to determine the health-promoting effects of woodderived biochemicals. The effect of spruce hemicellulose on the growth of probiotic intestinal bacteria was studied. The results suggest that the bifidobacteria and lactobacilli can utilize hemicellulose and thus it has potential as a prebiotic compound. In particular, the efficacy of pine polyphenols to inhibit the growth of prostate cancer was our main interest. It was found that stilbenoids and lignans inhibited the proliferation of various cancer cells, and reduced the growth of prostate cancer xenografts in mice. The polyphenol rich pine knot extract was well tolerated in diet and extract-derived polyphenols were rapidly absorbed after intake. Furthermore, we determined the effect of the dietary pine knot extract on the weight gain and the expression of aromatase gene in reporter mouse expressing the promoter region of a human aromatase gene. It was found that dietary pine knot extract alleviated the obesity-induced inflammation in adipose tissue and downregulated the expression of a human aromatase gene. Taken together, several components of spruce and pine may have a future role as health-promoting compounds.
Resumo:
During pregnancy and protein restriction, changes in serum insulin and leptin levels, food intake and several metabolic parameters normally result in enhanced adiposity. We evaluated serum leptin and insulin levels and their correlations with some predictive obesity variables in Wistar rats (90 days), up to the 14th day of pregnancy: control non-pregnant (N = 5) and pregnant (N = 7) groups (control diet: 17% protein), and low-protein non-pregnant (N = 5) and pregnant (N = 6) groups (low-protein diet: 6%). Independent of the protein content of the diet, pregnancy increased total (F1,19 = 22.28, P < 0.001) and relative (F1,19 = 5.57, P < 0.03) food intake, the variation of weight (F1,19 = 49.79, P < 0.000) and final body weight (F1,19 = 19.52, P < 0.001), but glycemia (F1,19 = 9.02, P = 0.01) and the relative weight of gonadal adipose tissue (F1,19 = 17.11, P < 0.001) were decreased. Pregnancy (F1,19 = 18.13, P < 0.001) and low-protein diet (F1,19 = 20.35, P < 0.001) increased the absolute weight of brown adipose tissue. However, the relative weight of this tissue was increased only by protein restriction (F1,19 = 15.20, P < 0.001) and the relative lipid in carcass was decreased in low-protein groups (F1,19 = 4.34, P = 0.05). Serum insulin and leptin levels were similar among groups and did not correlate with food intake. However, there was a positive relationship between serum insulin levels and carcass fat depots in low-protein groups (r = 0.37, P < 0.05), while in pregnancy serum leptin correlated with weight of gonadal (r = 0.39, P < 0.02) and retroperitoneal (r = 0.41, P < 0.01) adipose tissues. Unexpectedly, protein restriction during 14 days of pregnancy did not alter the serum profile of adiposity signals and their effects on food intake and adiposity, probably due to the short term of exposure to low-protein diet.
Resumo:
Adipose tissue secretes a variety of adipokines, including leptin and adiponectin, which are involved in endocrine processes regulating glucose and fatty metabolism, energy expenditure, inflammatory response, immunity, cardiovascular function, and reproduction. The present article describes the fluctuations in circulating leptin and adiponectin as well as their patterns of secretion in women from birth to menopause. During pregnancy, leptin and adiponectin seem to act in an autocrine/paracrine fashion in the placenta and adipose tissue, playing a role in the maternal-fetal interface and contributing to glucose metabolism and fetal development. In newborns, adiponectin levels are two to three times higher than in adults. Full-term newborns have significantly higher leptin and adiponectin levels than preterms, whereas small-for-gestational-age infants have lower levels of these adipokines than adequate-for-gestational-age newborns. However, with weight gain, leptin concentrations increase significantly. Children between 5 and 8 years of age experience an increase in leptin and a decrease in adiponectin regardless of body mass index, with a reversal of the newborn pattern for adiponectin: plasma adiponectin levels at age five are inversely correlated with percentage of body fat. In puberty, leptin plays a role in the regulation of menstrual cycles. In adults, it has been suggested that obese individuals exhibit both leptin resistance and decreased serum adiponectin levels. In conclusion, a progressive increase in adiposity throughout life seems to influence the relationship between leptin and adiponectin in women.
Resumo:
Dietary fat composition can interfere in the development of obesity due to the specific roles of some fatty acids that have different metabolic activities, which can alter both fat oxidation and deposition rates, resulting in changes in body weight and/or composition. High-fat diets in general are associated with hyperphagia, but the type of dietary fat seems to be more important since saturated fats are linked to a positive fat balance and omental adipose tissue accumulation when compared to other types of fat, while polyunsaturated fats, omega-3 and omega-6, seem to increase energy expenditure and decrease energy intake by specific mechanisms involving hormone-sensitive lipase, activation of peroxisome proliferator-activated receptor α (PPARα) and others. Saturated fat intake can also impair insulin sensitivity compared to omega-3 fat, which has the opposite effect due to alterations in cell membranes. Obesity is also associated with impaired mitochondrial function. Fat excess favors the production of malonyl-CoA, which reduces GLUT4 efficiency. The tricarboxylic acid cycle and beta-oxidation are temporarily uncoupled, forming metabolite byproducts that augment reactive oxygen species production. Exercise can restore mitochondrial function and insulin sensitivity, which may be crucial for a better prognosis in treating or preventing obesity.
Resumo:
Epigenetic mechanisms such as DNA methylation and histone modification are important in stem cell differentiation. Methylation is principally associated with transcriptional repression, and histone acetylation is correlated with an active chromatin state. We determined the effects of these epigenetic mechanisms on adipocyte differentiation in mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (ADSCs) using the chromatin-modifying agents trichostatin A (TSA), a histone deacetylase inhibitor, and 5-aza-2′-deoxycytidine (5azadC), a demethylating agent. Subconfluent MSC cultures were treated with 5, 50, or 500 nM TSA or with 1, 10, or 100 µM 5azadC for 2 days before the initiation of adipogenesis. The differentiation was quantified and expression of the adipocyte genes PPARG and FABP4 and of the anti-adipocyte gene GATA2 was evaluated. TSA decreased adipogenesis, except in BM-MSCs treated with 5 nM TSA. Only treatment with 500 nM TSA decreased cell proliferation. 5azadC treatment decreased proliferation and adipocyte differentiation in all conditions evaluated, resulting in the downregulation of PPARG and FABP4 and the upregulation of GATA2. The response to treatment was stronger in ADSCs than in BM-MSCs, suggesting that epigenetic memories may differ between cells of different origins. As epigenetic signatures affect differentiation, it should be possible to direct the use of MSCs in cell therapies to improve process efficiency by considering the various sources available.
Resumo:
The present study aimed to investigate visceral adipose tissue-specific serpin (vaspin) concentrations in serum and term placentas and relate these values to insulin resistance and lipid parameters in women with gestational diabetes mellitus (GDM). A total of 30 GDM subjects and 27 age-matched pregnant women with normal glucose tolerance (NGT, control) were included. Serum glucose, glycated hemoglobin (HbA1c), lipid profile, insulin, and vaspin were measured at the end of pregnancy, and homeostasis model of assessment-insulin resistance (HOMA-IR) values were calculated. Vaspin mRNA and protein levels in placentas were measured by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Serum vaspin levels were significantly lower in the GDM group than in controls (0.49±0.24 vs 0.83±0.27 ng/mL, respectively; P<0.01). Three days after delivery, serum vaspin levels were significantly decreased in subjects with GDM (0.36±0.13 vs0.49±0.24 ng/mL, P<0.01). However, in the GDM group, serum vaspin levels were not correlated with the parameters evaluated. In contrast, in the control group, serum vaspin levels were positively correlated with triglycerides (TG; r=0.45, P=0.02) and very low-density lipoprotein cholesterol (VLDL-C; r=0.42, P=0.03). Placental mRNA vaspin (0.60±0.32 vs0.68±0.32, P=0.46) and protein (0.30±0.08 vs0.39±0.26; P=0.33) levels in the GDM group did not differ significantly from those in the control group, but were negatively correlated with neonatal birth weight in the GDM group (r=-0.48, P=0.03; r=-0.88; P<0.01). Our findings indicated that vaspin may be an important adipokine involved in carbohydrate and lipid metabolism and may also play a role in fetal development.
Resumo:
White tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. Although its levels of catechins are higher than those of green tea (derived from the same plant), there are no studies addressing the relationship between this tea and obesity associated with oxidative stress.The objective of this study was to evaluate the effect of white tea on obesity and its complications using a diet induced obesity model. Forty male C57BL/6 mice were fed a high-fat diet to induce obesity (Obese group) or the same diet supplemented with 0.5% white tea extract (Obese + WTE) for 8 weeks. Adipose tissue, serum lipid profile, and oxidative stress were studied. White tea supplementation was not able to reduce food intake, body weight, or visceral adiposity. Similarly, there were no changes in cholesterol rich lipoprotein profile between the groups. A reduction in blood triacylglycerols associated with increased cecal lipids was observed in the group fed the diet supplemented with white tea. White tea supplementation also reduced oxidative stress in liver and adipose tissue. In conclusion, white tea extract supplementation (0.5%) does not influence body weight or adiposity in obese mice. Its benefits are restricted to the reduction in oxidative stress associated with obesity and improvement of hypertriacylglycerolemia.