899 resultados para Absorptiometry, Photon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The functionality of adult neocortical circuits can be altered by novel experiences or learning. This functional plasticity appears to rely on changes in the strength of neuronal connections that were established during development. Here we will describe some of our studies in which we have addressed whether structural changes, including the remodeling of axons and dendrites with synapse formation and elimination, could underlie experience-dependent plasticity in the adult neocortex. Using 2-photon laser-scanning microscopes and transgenic mice expressing GFP in a subset of pyramidal cells, we have observed that a small subset of dendritic spines continuously appear and disappear on a daily basis, whereas the majority of spines persists for months. Axonal boutons from different neuronal classes displayed similar behavior, although the extent of remodeling varied. Under baseline conditions, new spines in the barrel cortex were mostly transient and rarely survived for more than a week. However, when every other whisker was trimmed, the generation and loss of persistent spines was enhanced. Ultrastructural reconstruction of previously imaged spines and boutons showed that new spines slowly form synapses. New spines persisting for a few days always had synapses, whereas very young spines often lacked synapses. New synapses were predominantly found on large, multi-synapse boutons, suggesting that spine growth is followed by synapse formation, preferentially on existing boutons. Altogether our data indicate that novel sensory experience drives the stabilization of new spines on subclasses of cortical neurons and promotes the formation of new synapses. These synaptic changes likely underlie experience-dependent functional remodeling of specific neocortical circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative ultrasound (QUS) appears to be developing into an acceptable, low-cost and readily-accessible alternative to dual X-ray absorptiometry (DXA) measurements of bone mineral density (BMD) in the detection and management of osteoporosis. Perhaps the major difficulty with their widespread use is that many different QUS devices exist that differ substantially from each other, in terms of the parameters they measure and the strength of empirical evidence supporting their use. But another problem is that virtually no data exist outside of Caucasian or Asian populations. In general, heel QUS appears to be most tested and most effective. Some, but not all heel QUS devices are effective assessing fracture risk in some, but not all populations, the evidence being strongest for Caucasian females > 55 years old, though some evidence exists for Asian females > 55 and for Caucasian and Asian males > 70. Certain devices may allow to estimate the likelihood of osteoporosis, but very limited evidence exists supporting QUS use during the initiation or monitoring of osteoporosis treatment. Likely, QUS is most effective when combined with an assessment of clinical risk factors (CRF); with DXA reserved for individuals who are not identified as either high or low risk using QUS and CRF. However, monitoring and maintenance of test and instrument accuracy, precision and reproducibility are essential if QUS devices are to be used in clinical practice; and further scientific research in non-Caucasian, non-Asian populations clearly is compulsory to validate this tool for more widespread use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY: In a randomly selected cohort of Swiss community-dwelling elderly women prospectively followed up for 2.8 +/- 0.6 years, clinical fractures were assessed twice yearly. Bone mineral density (BMD) measured at tibial diaphysis (T-DIA) and tibial epiphysis (T-EPI) using dual-energy X-ray absorptiometry (DXA) was shown to be a valid alternative to lumbar spine or hip BMD in predicting fractures. INTRODUCTION: A study was carried out to determine whether BMD measurement at the distal tibia sites of T-EPI and T-DIA is predictive of clinical fracture risk. METHODS: In a predefined representative cohort of Swiss community-dwelling elderly women aged 70-80 years included in the prospective, multi-centre Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture risk (SEMOF) study, fracture risk profile was assessed and BMD measured at the lumbar spine (LS), hip (HIP) and tibia (T-DIA and T-EPI) using DXA. Thereafter, clinical fractures were reported in a bi-yearly questionnaire. RESULTS: During 1,786 women-years of follow-up, 68 clinical fragility fractures occurred in 61 women. Older age and previous fracture were identified as risk factors for the present fractures. A decrease of 1 standard deviation in BMD values yielded a 1.5-fold (HIP) to 1.8-fold (T-EPI) significant increase in clinical fragility fracture hazard ratio (adjusted for age and previous fracture). All measured sites had comparable performance for fracture prediction (area under the curve range from 0.63 [LS] to 0.68 [T-EPI]). CONCLUSION: Fracture risk prediction with BMD measurements at T-DIA and T-EPI is a valid alternative to BMD measurements at LS or HIP for patients in whom these sites cannot be accessed for clinical, technical or practical reasons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vivo imaging of green fluorescent protein (GFP)-labeled neurons in the intact brain is being used increasingly to study neuronal plasticity. However, interpreting the observed changes as modifications in neuronal connectivity needs information about synapses. We show here that axons and dendrites of GFP-labeled neurons imaged previously in the live mouse or in slice preparations using 2-photon laser microscopy can be analyzed using light and electron microscopy, allowing morphological reconstruction of the synapses both on the imaged neurons, as well as those in the surrounding neuropil. We describe how, over a 2-day period, the imaged tissue is fixed, sliced and immuno-labeled to localize the neurons of interest. Once embedded in epoxy resin, the entire neuron can then be drawn in three dimensions (3D) for detailed morphological analysis using light microscopy. Specific dendrites and axons can be further serially thin sectioned, imaged in the electron microscope (EM) and then the ultrastructure analyzed on the serial images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurement of BMD by dual-energy X-ray absorptiometry (DXA) is the "gold standard" for diagnosing osteoporosis but does not directly reflect deterioration in bone microarchitecture. The trabecular bone score (TBS), a novel gray-level texture measurement that can be extracted from DXA images, correlates with 3D parameters of bone microarchitecture. Our aim was to evaluate the ability of lumbar spine TBS to predict future clinical osteoporotic fractures. A total of 29,407 women 50 years of age or older at the time of baseline hip and spine DXA were identified from a database containing all clinical results for the Province of Manitoba, Canada. Health service records were assessed for the incidence of nontraumatic osteoporotic fracture codes subsequent to BMD testing (mean follow-up 4.7 years). Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Osteoporotic fractures were identified in 1668 (5.7%) women, including 439 (1.5%) spine and 293 (1.0%) hip fractures. Significantly lower spine TBS and BMD were identified in women with major osteoporotic, spine, and hip fractures (all p < 0.0001). Spine TBS and BMD predicted fractures equally well, and the combination was superior to either measurement alone (p < 0.001). Spine TBS predicts osteoporotic fractures and provides information that is independent of spine and hip BMD. Combining the TBS trabecular texture index with BMD incrementally improves fracture prediction in postmenopausal women. © 2011 American Society for Bone and Mineral Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectius: Valorar el significat dels defectes paradoxals (DP) segmentaris (captació en esforç més gran que en repòs) a la gated-SPECT (Single Photon Emission Computer Tomography) de perfusió miocàrdica amb compostos tecneciats en regions amb necrosi miocàrdica. Material i mètodes: Es van revisar 1764 SPECT de perfusió miocàrdica estrès-repòs consecutives de pacients amb infart (IM) previ i es van identificar 117 pacients (6,6%) en els quals els DPs corresponien a una regió amb necrosi miocàrdica. Es van valorar els criteris gammagràfics de viabilitat (intensitat del defecte, valor d'aquesta intensitat ponderat pel nombre de segments compromesos-VIP-, la motilitat i l'engrossiment miocàrdic sistòlic) en els segments d'aquestes regions i les característiques de l'artèria responsable en els 96 pacients en els quals s'havia practicat una coronariografia. Resultats: Es van analitzar 160 necrosis, 125 (75%) paradoxals (67 (54%) en regió AnteroSeptoApical i 58 (46%) en regió InferoLateral) i 35 (25%) no paradoxals (19 (54%) ASA i 16 ( 46%) IL). Els valors de severitat de la necrosi i del VIP van ser inferiors en l'estudi d'estrès respecte al repòs i la diferència d'aquests va ser sempre negativa, evidenciant un comportament gammagràfic paradoxal. Per contra, aquests valors van ser inferiors al repòs respecte a l'estrès en les necrosi no paradoxals posant de manifest un comportament gammagràfic de mínima o nul reversibilitat. Així mateix, es van trobar alteracions lleus en la motilitat i engrossiment de les necrosi paradoxals i moderats en les necrosi no paradoxals. Es van trobar 102 necrosis amb DP i coronariografia dels quals, 84 (88%) tenien permeabilitat a l'artèria responsable de la necrosi i 12 pacients (12%) tenien circulació colateral per compensar l'oclusió de l'artèria responsable. Conclusions: Tots els segments amb DP en regions amb necrosi complien criteris gammagràfics de viabilitat en les imatges d'estrès, considerant aquestes imatges millors per a l'avaluació d'aquest tipus de lesions. El vas responsable de la regió amb DP es trobava permeable o bé presentava circulació colateral evident en els casos en què la coronària es trobava closa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Prospective studies have shown that quantitative ultrasound (QUS) techniques predict the risk of fracture of the proximal femur with similar standardised risk ratios to dual-energy x-ray absorptiometry (DXA). Few studies have investigated these devices for the prediction of vertebral fractures. The Basel Osteoporosis Study (BOS) is a population-based prospective study to assess the performance of QUS devices and DXA in predicting incident vertebral fractures. METHODS: 432 women aged 60-80 years were followed-up for 3 years. Incident vertebral fractures were assessed radiologically. Bone measurements using DXA (spine and hip) and QUS measurements (calcaneus and proximal phalanges) were performed. Measurements were assessed for their value in predicting incident vertebral fractures using logistic regression. RESULTS: QUS measurements at the calcaneus and DXA measurements discriminated between women with and without incident vertebral fracture, (20% height reduction). The relative risks (RRs) for vertebral fracture, adjusted for age, were 2.3 for the Stiffness Index (SI) and 2.8 for the Quantitative Ultrasound Index (QUI) at the calcaneus and 2.0 for bone mineral density at the lumbar spine. The predictive value (AUC (95% CI)) of QUS measurements at the calcaneus remained highly significant (0.70 for SI, 0.72 for the QUI, and 0.67 for DXA at the lumbar spine) even after adjustment for other confounding variables. CONCLUSIONS: QUS of the calcaneus and bone mineral density measurements were shown to be significant predictors of incident vertebral fracture. The RRs for QUS measurements at the calcaneus are of similar magnitude as for DXA measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Myocardial infarction is rare in children, if it occurs, findings are almost similar to adults. In Ouchenne muscular dystrophy (OMO), ST segment displacement associated with typical chest pain can occur. We report the case of a young boy with OMO presenting symptoms suggestive of myocardial ischemia. Case report: 7 year old boy, diagnosed with OMO, eoming to the emergency department with complaints of acute chest pain, dyspnoea and anxiety the night before. Clinical examination was not remarkable, with exception of findings of the OMO. ECG showed important ST-segment elevation in right precordial leads. Major increase in troponin 1 42.33 mcg/(normal, <0.04 mcg/I) was found. Echocardiography revealed slight yskinesia of postero-septal wall without decrease in ventricular function. As acute pain had happened more han 12 hours before referral and as the child was asymptomatic, he received anti-platelets therapy. The serum level of troponin 1 declined and the ECG normalised in a few days. Cardiac catheterization did not show any coronary anomaly or eardiac dysfunction. Cardiac biopsy revealed myocardial cell damaged compatible with OMO cardiomyopathy. Tc99m myocardial single-photon emission computed tomography (SPECT) did not show any radionuclide uptake defect. Conclusions: ln this particular context of children with OMO, the classical signs of myocardial ischemia could be misleading, standard investigation failed to demonstrate the cause of chest pain and inerease of troponin l, there was also no evidence of myocarditis. Role of late enhancement (LE) signal in eontrast-enhanced MRI in the understanding of the occurring process has to be evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental studies in nude mice with human colon-carcinoma grafts demonstrated the therapeutic efficiency of F(ab')2 fragments to carcinoembryonic antigen (CEA) labeled with a high dose of 131Iodine. A phase I/II study was designed to determine the maximum tolerated dose of 131I-labeled F(ab')2 fragments (131I-F(ab')2) from anti-CEA monoclonal antibody F6, its limiting organ toxicity and tumor uptake. Ten patients with non-resectable liver metastases from colorectal cancer (9 detected by CT scan and 1 by laparotomy) were treated with 131I-F(ab')2, doses ranging from 87 mCi to 300 mCi for the first 5 patients, with a constant 300-mCi dose for the last 5 patients. For all the patients, autologous bone marrow was harvested and stored before treatment. Circulating CEA ranged from 2 to 126 ng/ml. No severe adverse events were observed during or immediately following infusion of therapeutic doses. The 9 patients with radiologic evidence of liver metastases showed uptake of 131I-F(ab')2 in the metastases, as observed by single-photon-emission tomography. The only toxicity was hematologic, and no severe aplasia was observed when up to 250 mCi was infused. At the 300-mCi dose, 5 out of 6 patients presented grade-3 or -4 hematologic toxicity, with a nadir for neutrophils and thrombocytes ranging from 25 to 35 days after infusion. In these 5 cases, bone marrow was re-infused. No clinical complications were observed during aplasia. The tumor response could be evaluated in 9 out of 10 patients. One patient showed a partial response of one small liver metastasis (2 cm in diameter) and a stable evolution of the other metastases, 2 patients had stable disease, and 6 showed tumor progression at the time of evaluation (2 or 3 months after injection) by CT scan. This phase-I/II study demonstrated that a dose of 300 mCi of 131I-F(ab')2 from the anti-CEA Mab F6 is well tolerated with bone-marrow rescue, whereas a dose of 200 mCi can be infused without severe bone-marrow toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The trabecular bone score (TBS) is a gray-level textural metric that can be extracted from the two-dimensional lumbar spine dual-energy X-ray absorptiometry (DXA) image. TBS is related to bone microarchitecture and provides skeletal information that is not captured from the standard bone mineral density (BMD) measurement. Based on experimental variograms of the projected DXA image, TBS has the potential to discern differences between DXA scans that show similar BMD measurements. An elevated TBS value correlates with better skeletal microstructure; a low TBS value correlates with weaker skeletal microstructure. Lumbar spine TBS has been evaluated in cross-sectional and longitudinal studies. The following conclusions are based upon publications reviewed in this article: 1) TBS gives lower values in postmenopausal women and in men with previous fragility fractures than their nonfractured counterparts; 2) TBS is complementary to data available by lumbar spine DXA measurements; 3) TBS results are lower in women who have sustained a fragility fracture but in whom DXA does not indicate osteoporosis or even osteopenia; 4) TBS predicts fracture risk as well as lumbar spine BMD measurements in postmenopausal women; 5) efficacious therapies for osteoporosis differ in the extent to which they influence the TBS; 6) TBS is associated with fracture risk in individuals with conditions related to reduced bone mass or bone quality. Based on these data, lumbar spine TBS holds promise as an emerging technology that could well become a valuable clinical tool in the diagnosis of osteoporosis and in fracture risk assessment. © 2014 American Society for Bone and Mineral Research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sporadic case of multiple endocrine neoplasia type I with coexisting insulinoma and hyperparathyroidism was investigated in vivo and in vitro. The insulinoma was localized by somatostatin receptor scintigraphy and these receptors were functionally active. Octreotide administration decreased the basal insulin and glucagon secretion by 90 and 46%, respectively. Immunocytochemistry of the insulinoma tissue was positive for insulin, chromogranin A and neuropeptide Y. The insulinoma cells were also isolated and cultured in vitro. Incubation experiments revealed that a low glucose concentration (1 mmol/l) was sufficient to increase cytosolic free calcium and to produce a maximal glucose-induced insulin release. Northern blot analysis of RNA obtained from the tumor showed a high abundance of the low Km glucose transporter GLUT1 but no transcript for the high Km glucose transporter GLUT2. The abnormal distribution of glucose transporters probably relates to the abnormal glucose sensing of insulinoma cells, and explains their sustained insulin secretion at low glucose concentrations. Whether these abnormalities share a pathogenetic link with the presence of functionally active somatostatin receptors remains to be elucidated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □D(w,Q,V1)(low) averaged over a scoring volume V₁ for a geometry where V₁ is filled with the low-density medium and the absorbed dose to water □D(w,QV2)(low) averaged over a volume V₂ for a geometry where V₂ is filled with water. In the Monte Carlo simulations, □D(w,QV2)(low) is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We found that lumbar spine texture analysis using trabecular bone score (TBS) is a risk factor for MOF and a risk factor for death in a retrospective cohort study from a large clinical registry for the province of Manitoba, Canada. INTRODUCTION: FRAX® estimates the 10-year probability of major osteoporotic fracture (MOF) using clinical risk factors and femoral neck bone mineral density (BMD). Trabecular bone score (TBS), derived from texture in the spine dual X-ray absorptiometry (DXA) image, is related to bone microarchitecture and fracture risk independently of BMD. Our objective was to determine whether TBS provides information on MOF probability beyond that provided by the FRAX variables. METHODS: We included 33,352 women aged 40-100 years (mean 63 years) with baseline DXA measurements of lumbar spine TBS and femoral neck BMD. The association between TBS, the FRAX variables, and the risk of MOF or death was examined using an extension of the Poisson regression model. RESULTS: During the mean of 4.7 years, 1,754 women died and 1,872 sustained one or more MOF. For each standard deviation reduction in TBS, there was a 36 % increase in MOF risk (HR 1.36, 95 % CI 1.30-1.42, p < 0.001) and a 32 % increase in death (HR 1.32, 95 % CI 1.26-1.39, p < 0.001). When adjusted for significant clinical risk factors and femoral neck BMD, lumbar spine TBS was still a significant predictor of MOF (HR 1.18, 95 % CI 1.12-1.23) and death (HR 1.20, 95 % CI 1.14-1.26). Models for estimating MOF probability, accounting for competing mortality, showed that low TBS (10th percentile) increased risk by 1.5-1.6-fold compared with high TBS (90th percentile) across a broad range of ages and femoral neck T-scores. CONCLUSIONS: Lumbar spine TBS is able to predict incident MOF independent of FRAX clinical risk factors and femoral neck BMD even after accounting for the increased death hazard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective:We investigated to what extent changes in metabolic rate and composition of weight loss explained the less-than-expected weight loss in obese men and women during a diet-plus-exercise intervention.Design:In all, 16 obese men and women (41±9 years; body mass index (BMI) 39±6 kg m(-2)) were investigated in energy balance before, after and twice during a 12-week very-low-energy diet(565-650 kcal per day) plus exercise (aerobic plus resistance training) intervention. The relative energy deficit (EDef) from baseline requirements was severe (74%-87%). Body composition was measured by deuterium dilution and dual energy X-ray absorptiometry, and resting metabolic rate (RMR) was measured by indirect calorimetry. Fat mass (FM) and fat-free mass (FFM) were converted into energy equivalents using constants 9.45 kcal per g FM and 1.13 kcal per g FFM. Predicted weight loss was calculated from the EDef using the '7700 kcal kg(-1) rule'.Results:Changes in weight (-18.6±5.0 kg), FM (-15.5±4.3 kg) and FFM (-3.1±1.9 kg) did not differ between genders. Measured weight loss was on average 67% of the predicted value, but ranged from 39% to 94%. Relative EDef was correlated with the decrease in RMR (R=0.70, P<0.01), and the decrease in RMR correlated with the difference between actual and expected weight loss (R=0.51, P<0.01). Changes in metabolic rate explained on average 67% of the less-than-expected weight loss, and variability in the proportion of weight lost as FM accounted for a further 5%. On average, after adjustment for changes in metabolic rate and body composition of weight lost, actual weight loss reached 90% of the predicted values.Conclusion:Although weight loss was 33% lower than predicted at baseline from standard energy equivalents, the majority of this differential was explained by physiological variables. Although lower-than-expected weight loss is often attributed to incomplete adherence to prescribed interventions, the influence of baseline calculation errors and metabolic downregulation should not be discounted.