997 resultados para Absalon, abp., 1128-1201.
Resumo:
This article analyses Catholic responses to persecution of the Church by the Mexican state during Mexico's cristero rebellion (1926–9) and seeks to make a new contribution to the revolt's religious history. Faced with the Calles regime's anticlericalism, the article argues, Mexico's episcopate developed an alternative cultic model premised on a revitalised lay religion. The article then focuses on changes and continuities in lay – clerical relations, and on the new religious powers of the faithful, now empowered to celebrate ‘white’ masses and certain sacraments by themselves. The article concludes that persecution created new spaces for lay religious participation, showing the 1910–40 Revolution to be a period of religious, as well as social, upheaval.
Resumo:
Vascular insufficiency and retinal ischaemia precede many proliferative retinopathies and stimulate secretion of vasoactive growth factors. Vascular endothelial growth factor (VEGF) plays a major role and we therefore investigated the other members of the VEGF family: Placental growth factor (PlGF), VEGF-B, -C, and -D, and platelet derived growth factors (PDGF) A and B. Neonatal mice were exposed to hyperoxia for 5 days and then returned to room air (resulting in acute retinal ischaemia). RT-PCR demonstrated that all the members of the VEGF family are expressed in the retina and in situ hybridization (ISH) located their mRNAs primarily in ganglion cells. Similarly to VEGF itself, VEGF-C, PDGF-A, and PDGF-B were upregulated during retinal ischaemia (P < 0.05). Only PlGF gene expression increased during hyperoxia (P < 0.01). The expression pattern of these growth factors suggests a role in the normal retina and during vaso-obliterative and ischaemic phases.
Resumo:
Negative-strand RNA viruses encode a single RNA-dependent RNA polymerase (RdRp) which transcribes and replicates the genome. The open reading frame encoding the RdRp from a virulent wild-type strain of rinderpest virus (RPV) was inserted into an expression plasmid. Sequences encoding enhanced green fluorescent protein (EGFP) were inserted into a variable hinge of the RdRp. The resulting polymerase was autofluorescent, and its activity in the replication/transcription of a synthetic minigenome was reduced. We investigated the potential of using this approach to rationally attenuate a virus by inserting the DNA sequences encoding the modified RdRp into a full-length anti-genome plasmid from which a virulent virus (rRPV(KO)) can be rescued. A recombinant virus, rRPV(KO)L-RRegfpR, which grew at an indistinguishable rate and to an identical titer as rRPV(KO) in vitro, was rescued. Fluorescently tagged polymerase was visible in large cytoplasmic inclusions and beneath the cell membrane. Subcutaneous injection of 10(4) TCID(50) of the rRPV(KO) parental recombinant virus into cattle leads to severe disease symptoms (leukopenia/diarrhea and pyrexia) and death by 9 days postinfection. Animals infected with rRPV(KO)L-RRegfpR exhibited transient leukopenia and mild pyrexia, and the only noticeable clinical signs were moderate reddening of one eye and a slight ocular-nasal discharge. Viruses that expressed the modified polymerase were isolated from peripheral blood lymphocytes and eye swabs. This demonstrates that a virulent morbillivirus can be attenuated in a single step solely by modulating RdRp activity and that there is not necessarily a correlation between virus growth in vitro and in vivo.
Resumo:
We propose a reference model of the kinetics of a viral RNA-dependent RNA polymerase (vRdRp) activities and its regulation during infection of eucaryotic cells. After measles virus infects a cell, mRNAs from all genes immediately start to accumulate linearly over the first 5 to 6 h and then exponentially until approximately 24 h. The change from a linear to an exponential accumulation correlates with de novo synthesis of vRdRp from the incoming template. Expression of the virus nucleoprotein (N) prior to infection shifts the balance in favor of replication. Conversely, inhibition of protein synthesis by cycloheximide favors the latter. The in vivo elongation speed of the viral polymerase is approximately 3 nucleotides/s. A similar profile with fivefold-slower kinetics can be obtained using a recombinant virus expressing a structurally altered polymerase. Finally, virions contain only encapsidated genomic, antigenomic, and 5'-end abortive replication fragment RNAs.
Resumo:
Cytokine responses can be regulated by a family of proteins termed suppressors of cytokine signaling (SOCS) which can inhibit the JAK/STAT pathway in a classical negative-feedback manner. While the SOCS are thought to target signaling intermediates for degradation, relatively little is known about how their turnover is regulated. Unlike other SOCS family members, we find that SOCS2 can enhance interleukin-2 (IL-2)- and IL-3-induced STAT phosphorylation following and potentiate proliferation in response to cytokine stimulation. As a clear mechanism for these effects, we demonstrate that expression of SOCS2 results in marked proteasome-dependent reduction of SOCS3 and SOCS1 protein expression. Furthermore, we provide evidence that this degradation is dependent on the presence of an intact SOCS box and that the loss of SOCS3 is enhanced by coexpression of elongin B/C. This suggests that SOCS2 can bind to SOCS3 and elongin B/C to form an E3 ligase complex resulting in the degradation of SOCS3. Therefore, SOCS2 can enhance cytokine responses by accelerating proteasome-dependent turnover of SOCS3, suggesting a mechanism for the gigantism observed in SOCS2 transgenic mice.
Resumo:
Langerin is a C-type lectin expressed by a subset of dendritic leukocytes, the Langerhans cells (LC). Langerin is a cell surface receptor that induces the formation of an LC-specific organelle, the Birbeck granule (BG). We generated a langerin(-/-) mouse on a C57BL/6 background which did not display any macroscopic aberrant development. In the absence of langerin, LC were detected in normal numbers in the epidermis but the cells lacked BG. LC of langerin(-/-) mice did not present other phenotypic alterations compared to wild-type littermates. Functionally, the langerin(-/-) LC were able to capture antigen, to migrate towards skin draining lymph nodes, and to undergo phenotypic maturation. In addition, langerin(-/-) mice were not impaired in their capacity to process native OVA protein for I-A(b)-restricted presentation to CD4(+) T lymphocytes or for H-2K(b)-restricted cross-presentation to CD8(+) T lymphocytes. langerin(-/-) mice inoculated with mannosylated or skin-tropic microorganisms did not display an altered pathogen susceptibility. Finally, chemical mutagenesis resulted in a similar rate of skin tumor development in langerin(-/-) and wild-type mice. Overall, our data indicate that langerin and BG are dispensable for a number of LC functions. The langerin(-/-) C57BL/6 mouse should be a valuable model for further functional exploration of langerin and the role of BG.