926 resultados para ATMOSPHERIC DEPOSITION
Resumo:
Using the technique of liquid crystal templating a series of high surface area mesoporous platinum microelectrodes was fabricated. The underpotential deposition of metal ions at such electrodes was found to be similar to that at conventional platinum electrodes. The phenomena of underpotential deposition, in combination with the intrinsic properties of mesoporous microelectrodes (i.e. a high surface area and efficient mass transport) was exploited for the purpose of anodic stripping voltammetry. In particular the underpotential deposition of Ag+, Pb2+ and Cu2+ ions was investigated and it was found that mesoporous microelectrodes were able to quantify the concentration of ions in solution down to the ppb range. The overall behaviour of the mesoporous electrodes was found to be superior to that of conventional microelectrodes and the effects of interference by surfactants were minimal.
Resumo:
Ozone and its precursors were measured on board the Facility for Airborne Atmospheric Measurements (FAAM) BAe 146 Atmospheric Research Aircraft during the monsoon season 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) campaign. One of the main features observed in the west African boundary layer is the increase of the ozone mixing ratios from 25 ppbv over the forested area (south of 12 degrees N) up to 40 ppbv over the Sahelian area. We employ a two-dimensional ( latitudinal versus vertical) meteorological model coupled with an O-3-NOx-VOC chemistry scheme to simulate the distribution of trace gases over West Africa during the monsoon season and to analyse the processes involved in the establishment of such a gradient. Including an additional source of NO over the Sahelian region to account for NO emitted by soils we simulate a mean NOx concentration of 0.7 ppbv at 16 degrees N versus 0.3 ppbv over the vegetated region further south in reasonable agreement with the observations. As a consequence, ozone is photochemically produced with a rate of 0.25 ppbv h(-1) over the vegetated region whilst it reaches up to 0.75 ppbv h(-1) at 16 degrees N. We find that the modelled gradient is due to a combination of enhanced deposition to vegetation, which decreases the ozone levels by up to 11 pbbv, and the aforementioned enhanced photochemical production north of 12 degrees N. The peroxy radicals required for this enhanced production in the north come from the oxidation of background CO and CH4 as well as from VOCs. Sensitivity studies reveal that both the background CH4 and partially oxidised VOCs, produced from the oxidation of isoprene emitted from the vegetation in the south, contribute around 5-6 ppbv to the ozone gradient. These results suggest that the northward transport of trace gases by the monsoon flux, especially during nighttime, can have a significant, though secondary, role in determining the ozone gradient in the boundary layer. Convection, anthropogenic emissions and NO produced from lightning do not contribute to the establishment of the discussed ozone gradient.
Resumo:
Atmospheric models suggest that the reduction of Hg(II) to Hg(O) by S(W) prolongs the residence time of mercury. The redox reaction was investigated both in the aqueous phase (where the reductant is sulfite) and on particulate matter (where the reductant in SO2(g)). In both cases, one of the ultimate products is HgS. A mechanism is proposed involving formation of Hg(O) followed by mercury-induced disproportionation of SO2.
Resumo:
Fabrication of a thin praseodymium oxide film is of great technological interest in sensor, semiconducting, and ceramic industries. It is shown for the first time that an ultrathin layer of praseodymium oxide can be deposited on tin-doped indium oxide surface (ITO) by applying a negative sweeping voltage (cathodic electrodeposition) to the aqueous solution containing Pr(NO3)(3) and H2O2 using cyclic voltammetry, followed by annealing the film at 500 S C for 1 h. X-ray diffraction suggested that the predominant phase of the film is Pr6O11 and atomic force microscopy and scanning electron microscopy characterizations indicated that this film is assembled with a monolayer coverage of spherical praseodymium oxide nanoparticles packed closely on the ITO surface. AC impedance measurements of the thin Pr6O11 film on ITO also revealed that the composite material displays a much higher electrical conductivity compared to the pure ITO. As a result, the material could suitably be used as a new chemical sensor. (c) 2006 The Electrochemical Society.
Resumo:
Praseodymium oxide as a thin film of controllable layer is known to display many unique physiochemical properties, which can be useful to ceramic, semiconductive and sensor industries. Here in this short paper, we describe a new chemical method of depositing praseodymium oxide on tin-doped indium oxide (ITO) surface using a layer-by-layer approach. The process is carried out by dipping the ITO in solutions of adsorbable polycationic chitosan and alkaline praseodymium hydroxide Pr(OH)(3) alternatively in order to build up the well-defined multi-layers. XRD suggests that the predominant form of the oxide is Pr6O11, obtained after heat treatment of the deposited ITO in static air at 500 degrees C. Microscopic studies including AFM, TEM and SEM indicate that the deposited oxide particles are uniform in size and shape (cylindrical), mesoporous and the thickness of the film can be controlled. AC impedance measurements of the deposited materials also reveal that the oxide layers display a high electrical conductivity hence suitable for sensor uses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Experimental data for the title reaction were modeled using master equation (ME)/RRKM methods based on the Multiwell suite of programs. The starting point for the exercise was the empirical fitting provided by the NASA (Sander, S. P.; Finlayson-Pitts, B. J.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Moortgat, G. K.; Orkin, V. L.; Ravishankara, A. R. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 15; Jet Propulsion Laboratory: Pasadena, California, 2006)(1) and IUPAC (Atkinson, R.; Baulch, D. L.; Cox, R. A.: R. F. Hampson, J.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data. 2000, 29, 167) 2 data evaluation panels, which represents the data in the experimental pressure ranges rather well. Despite the availability of quite reliable parameters for these calculations (molecular vibrational frequencies (Parthiban, S.; Lee, T. J. J. Chem. Phys. 2000, 113, 145)3 and a. value (Orlando, J. J.; Tyndall, G. S. J. Phys. Chem. 1996, 100,. 19398)4 of the bond dissociation energy, D-298(BrO-NO2) = 118 kJ mol(-1), corresponding to Delta H-0(circle) = 114.3 kJ mol(-1) at 0 K) and the use of RRKM/ME methods, fitting calculations to the reported data or the empirical equations was anything but straightforward. Using these molecular parameters resulted in a discrepancy between the calculations and the database of rate constants of a factor of ca. 4 at, or close to, the low-pressure limit. Agreement between calculation and experiment could be achieved in two ways, either by increasing Delta H-0(circle) to an unrealistically high value (149.3 kJ mol(-1)) or by increasing
Resumo:
Microcrystalline cellulose (MCC) and cross-linked polyvinylpyrrolidone (PVP-CL) were examined as polymeric carriers to support amorphous ibuprofen (IB). Drug/cartier systems were prepared as physical mixes, and drug was loaded onto the polymers by hot mix and solvent deposition methods. The systems were examined using differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD) and by dissolution testing. PVP-CL reduced drug crystallinity more than MCC and, surprisingly, even very simple mixing of ibuprofen with PVP-CL induced disordering of the drug. Increased ibuprofen dissolution rates were achieved with both polymers, in the order of solvent deposition > hot mixes > physical mixes. The increased dissolution rates could be attributed to a combination of faster dissolution from amorphous ibuprofen, microcrystalline drug deposition on carrier surfaces and polymer swelling. However, no clear relationship was observed between ibuprofen dissolution rates (using first order, Higuchi or Hixson-Crowell relationships) and drug crystallinity. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A cross-platform field campaign, OP3, was conducted in the state of Sabah in Malaysian Borneo between April and July of 2008. Among the suite of observations recorded, the campaign included measurements of NOx and O3 – crucial outputs of any model chemistry mechanism. We describe the measurements of these species made from both the ground site and aircraft. We then use the output from two resolutions of the chemistry transport model p-TOMCAT to illustrate the ability of a global model chemical mechanism to capture the chemistry at the rainforest site. The basic model performance is good for NOx and poor for ozone. A box model containing the same chemical mechanism is used to explore the results of the global model in more depth and make comparisons between the two. Without some parameterization of the nighttime boundary layer – free troposphere mixing (i.e. the use of a dilution parameter), the box model does not reproduce the observations, pointing to the importance of adequately representing physical processes for comparisons with surface measurements. We conclude with a discussion of box model budget calculations of chemical reaction fluxes, deposition and mixing, and compare these results to output from p-TOMCAT. These show the same chemical mechanism behaves similarly in both models, but that emissions and advection play particularly strong roles in influencing the comparison to surface measurements.
Resumo:
The correlated k-distribution (CKD) method is widely used in the radiative transfer schemes of atmospheric models and involves dividing the spectrum into a number of bands and then reordering the gaseous absorption coefficients within each one. The fluxes and heating rates for each band may then be computed by discretizing the reordered spectrum into of order 10 quadrature points per major gas and performing a monochromatic radiation calculation for each point. In this presentation it is shown that for clear-sky longwave calculations, sufficient accuracy for most applications can be achieved without the need for bands: reordering may be performed on the entire longwave spectrum. The resulting full-spectrum correlated k (FSCK) method requires significantly fewer monochromatic calculations than standard CKD to achieve a given accuracy. The concept is first demonstrated by comparing with line-by-line calculations for an atmosphere containing only water vapor, in which it is shown that the accuracy of heating-rate calculations improves approximately in proportion to the square of the number of quadrature points. For more than around 20 points, the root-mean-squared error flattens out at around 0.015 K/day due to the imperfect rank correlation of absorption spectra at different pressures in the profile. The spectral overlap of m different gases is treated by considering an m-dimensional hypercube where each axis corresponds to the reordered spectrum of one of the gases. This hypercube is then divided up into a number of volumes, each approximated by a single quadrature point, such that the total number of quadrature points is slightly fewer than the sum of the number that would be required to treat each of the gases separately. The gaseous absorptions for each quadrature point are optimized such that they minimize a cost function expressing the deviation of the heating rates and fluxes calculated by the FSCK method from line-by-line calculations for a number of training profiles. This approach is validated for atmospheres containing water vapor, carbon dioxide, and ozone, in which it is found that in the troposphere and most of the stratosphere, heating-rate errors of less than 0.2 K/day can be achieved using a total of 23 quadrature points, decreasing to less than 0.1 K/day for 32 quadrature points. It would be relatively straightforward to extend the method to include other gases.
Resumo:
Current flowing in the global atmospheric electrical circuit (AEC) substantially decreased during the twentieth century. Fair-weather potential gradient (PG) observations in Scotland and Shetland show a previously unreported annual decline from 1920 to 1980, when the measurements ceased. A 25% reduction in PG occurred in Scotland 1920–50, with the maximum decline during the winter months. This is quantitatively explained by a decrease in cosmic rays (CR) increasing the thunderstorm-electrosphere coupling resistance, reducing the ionospheric potential VI. Independent measurements of VI also suggest a reduction of 27% from 1920–50. The secular decrease will influence fair weather atmospheric electrical parameters, including ion concentrations and aerosol electrification. Between 1920–50, the PG showed a negative correlation with global temperature, despite the positive correlation found recently between surface temperature and VI. The 1980s stabilisation in VI may arise from compensation of the continuing CR-induced decline by increases in global temperature and convective electrification.
Resumo:
Evidence is emerging for physical links among clouds, global temperatures, the global atmospheric electrical circuit and cosmic ray ionisation. The global circuit extends throughout the atmosphere from the planetary surface to the lower layers of the ionosphere. Cosmic rays are the principal source of atmospheric ions away from the continental boundary layer: the ions formed permit a vertical conduction current to flow in the fair weather part of the global circuit. Through the (inverse) solar modulation of cosmic rays, the resulting columnar ionisation changes may allow the global circuit to convey a solar influence to meteorological phenomena of the lower atmosphere. Electrical effects on non-thunderstorm clouds have been proposed to occur via the ion-assisted formation of ultra-fine aerosol, which can grow to sizes able to act as cloud condensation nuclei, or through the increased ice nucleation capability of charged aerosols. Even small atmospheric electrical modulations on the aerosol size distribution can affect cloud properties and modify the radiative balance of the atmosphere, through changes communicated globally by the atmospheric electrical circuit. Despite a long history of work in related areas of geophysics, the direct and inverse relationships between the global circuit and global climate remain largely quantitatively unexplored. From reviewing atmospheric electrical measurements made over two centuries and possible paleoclimate proxies, global atmospheric electrical circuit variability should be expected on many timescales
Resumo:
An electrical current of the order one picoamp per metre squared flows vertically in the Earth's atmosphere, between the ionosphere at approximately 50km altitude and the surface. This current is generated by global thunderstorm activity and is modulated by galactic cosmic rays and atmospheric aerosol. In fair weather conditions, this current cause a vertical atmospheric electric field, commonly measured as a potential gradient. For circumstances other than fair weather conditions, the potential gradient varies, from small steady enhancements in fog to large fluctuations in thunderstorms. The atmospheric potential gradient is continuously monitored at the Reading University Atmospheric Observatory. An account of the variability of the potential gradient on a variety of time scales will be presented.
Resumo:
The atmospheric electrical Potential Gradient (PG) arises from global thunderstorm activity, but surface measurements of the atmospheric Potential Gradient (PG) are influenced by global thunderstorms and local aerosol concentration changes. The local aerosol change can be monitored independently, and in some cases the concentration changes are closely related to PG changes. For these circumstances, a general theory to remove the local aerosol influence on PG measurements has been developed. Continuous measurements of PG and aerosol mass concentration were made during 24–31 Dec, 2005 within an urban environment at Reading, UK. The average diurnal variation of PG showed a double diurnal cycle, with maxima in the early morning and evening hours. The aerosol concentration has similar double maxima. Removing the aerosol using from the PG and aerosol correlation returns a single diurnal cycle, suggestive of the more global PG diurnal cycle.