926 resultados para ASSESSMENT MODELS
Resumo:
Given the discrepancy over the optimum levels of employment for Colombia, this research targets both, the national and urban, Non-Accelerating Inflation Rate of Unemployment (NAIRU) for the Colombian markets -- In doing so, there is a strong pertinence in estimating the constant NAIRU through raw and minimally altered data and providing the reader with a complete brief of the theory in which the model is founded -- The introduction of supply shocks is considered to attain improved estimations and a more reliable assessment of the NAIRU to those that have previously been attempted -- The backbone of the analysis is conducted through the relationship established by the Phillips curve from 2001 until 2015
Resumo:
BACKGROUND: Risk assessment is fundamental in the management of acute coronary syndromes (ACS), enabling estimation of prognosis. AIMS: To evaluate whether the combined use of GRACE and CRUSADE risk stratification schemes in patients with myocardial infarction outperforms each of the scores individually in terms of mortality and haemorrhagic risk prediction. METHODS: Observational retrospective single-centre cohort study including 566 consecutive patients admitted for non-ST-segment elevation myocardial infarction. The CRUSADE model increased GRACE discriminatory performance in predicting all-cause mortality, ascertained by Cox regression, demonstrating CRUSADE independent and additive predictive value, which was sustained throughout follow-up. The cohort was divided into four different subgroups: G1 (GRACE<141; CRUSADE<41); G2 (GRACE<141; CRUSADE≥41); G3 (GRACE≥141; CRUSADE<41); G4 (GRACE≥141; CRUSADE≥41). RESULTS: Outcomes and variables estimating clinical severity, such as admission Killip-Kimbal class and left ventricular systolic dysfunction, deteriorated progressively throughout the subgroups (G1 to G4). Survival analysis differentiated three risk strata (G1, lowest risk; G2 and G3, intermediate risk; G4, highest risk). The GRACE+CRUSADE model revealed higher prognostic performance (area under the curve [AUC] 0.76) than GRACE alone (AUC 0.70) for mortality prediction, further confirmed by the integrated discrimination improvement index. Moreover, GRACE+CRUSADE combined risk assessment seemed to be valuable in delineating bleeding risk in this setting, identifying G4 as a very high-risk subgroup (hazard ratio 3.5; P<0.001). CONCLUSIONS: Combined risk stratification with GRACE and CRUSADE scores can improve the individual discriminatory power of GRACE and CRUSADE models in the prediction of all-cause mortality and bleeding. This combined assessment is a practical approach that is potentially advantageous in treatment decision-making.
Resumo:
Understanding how aquatic species grow is fundamental in fisheries because stock assessment often relies on growth dependent statistical models. Length-frequency-based methods become important when more applicable data for growth model estimation are either not available or very expensive. In this article, we develop a new framework for growth estimation from length-frequency data using a generalized von Bertalanffy growth model (VBGM) framework that allows for time-dependent covariates to be incorporated. A finite mixture of normal distributions is used to model the length-frequency cohorts of each month with the means constrained to follow a VBGM. The variances of the finite mixture components are constrained to be a function of mean length, reducing the number of parameters and allowing for an estimate of the variance at any length. To optimize the likelihood, we use a minorization–maximization (MM) algorithm with a Nelder–Mead sub-step. This work was motivated by the decline in catches of the blue swimmer crab (BSC) (Portunus armatus) off the east coast of Queensland, Australia. We test the method with a simulation study and then apply it to the BSC fishery data.
Resumo:
It is nowadays recognized that the risk of human co-exposure to multiple mycotoxins is real. In the last years, a number of studies have approached the issue of co-exposure and the best way to develop a more precise and realistic assessment. Likewise, the growing concern about the combined effects of mycotoxins and their potential impact on human health has been reflected by the increasing number of toxicological studies on the combined toxicity of these compounds. Nevertheless, risk assessment of these toxins, still follows the conventional paradigm of single exposure and single effects, incorporating only the possibility of additivity but not taking into account the complex dynamics associated to interactions between different mycotoxins or between mycotoxins and other food contaminants. Considering that risk assessment is intimately related to the establishment of regulatory guidelines, once the risk assessment is completed, an effort to reduce or manage the risk should be followed to protect public health. Risk assessment of combined human exposure to multiple mycotoxins thus poses several challenges to scientists, risk assessors and risk managers and opens new avenues for research. This presentation aims to give an overview of the different challenges posed by the likelihood of human co-exposure to mycotoxins and the possibility of interactive effects occurring after absorption, towards knowledge generation to support a more accurate human risk assessment and risk management. For this purpose, a physiologically-based framework that includes knowledge on the bioaccessibility, toxicokinetics and toxicodynamics of multiple toxins is proposed. Regarding exposure assessment, the need of harmonized food consumption data, availability of multianalyte methods for mycotoxin quantification, management of left-censored data and use of probabilistic models will be highlight, in order to develop a more precise and realistic exposure assessment. On the other hand, the application of predictive mathematical models to estimate mycotoxins’ combined effects from in vitro toxicity studies will be also discussed. Results from a recent Portuguese project aimed at exploring the toxic effects of mixtures of mycotoxins in infant foods and their potential health impact will be presented as a case study, illustrating the different aspects of risk assessment highlighted in this presentation. Further studies on hazard and exposure assessment of multiple mycotoxins, using harmonized approaches and methodologies, will be crucial towards an improvement in data quality and contributing to holistic risk assessment and risk management strategies for multiple mycotoxins in foodstuffs.
Resumo:
Nowadays, risks arising from the rapid development of oil and gas industries are significantly increasing. As a result, one of the main concerns of either industrial or environmental managers is the identification and assessment of such risks in order to develop and maintain appropriate proactive measures. Oil spill from stationary sources in offshore zones is one of the accidents resulting in several adverse impacts on marine ecosystems. Considering a site's current situation and relevant requirements and standards, risk assessment process is not only capable of recognizing the probable causes of accidents but also of estimating the probability of occurrence and the severity of consequences. In this way, results of risk assessment would help managers and decision makers create and employ proper control methods. Most of the represented models for risk assessment of oil spills are achieved on the basis of accurate data bases and analysis of historical data, but unfortunately such data bases are not accessible in most of the zones, especially in developing countries, or else they are newly established and not applicable yet. This issue reveals the necessity of using Expert Systems and Fuzzy Set Theory. By using such systems it will be possible to formulize the specialty and experience of several experts and specialists who have been working in petroliferous areas for several years. On the other hand, in developing countries often the damages to environment and environmental resources are not considered as risk assessment priorities and they are approximately under-estimated. For this reason, the proposed model in this research is specially addressing the environmental risk of oil spills from stationary sources in offshore zones.
Resumo:
Background: Depression is a major health problem worldwide and the majority of patients presenting with depressive symptoms are managed in primary care. Current approaches for assessing depressive symptoms in primary care are not accurate in predicting future clinical outcomes, which may potentially lead to over or under treatment. The Allostatic Load (AL) theory suggests that by measuring multi-system biomarker levels as a proxy of measuring multi-system physiological dysregulation, it is possible to identify individuals at risk of having adverse health outcomes at a prodromal stage. Allostatic Index (AI) score, calculated by applying statistical formulations to different multi-system biomarkers, have been associated with depressive symptoms. Aims and Objectives: To test the hypothesis, that a combination of allostatic load (AL) biomarkers will form a predictive algorithm in defining clinically meaningful outcomes in a population of patients presenting with depressive symptoms. The key objectives were: 1. To explore the relationship between various allostatic load biomarkers and prevalence of depressive symptoms in patients, especially in patients diagnosed with three common cardiometabolic diseases (Coronary Heart Disease (CHD), Diabetes and Stroke). 2 To explore whether allostatic load biomarkers predict clinical outcomes in patients with depressive symptoms, especially in patients with three common cardiometabolic diseases (CHD, Diabetes and Stroke). 3 To develop a predictive tool to identify individuals with depressive symptoms at highest risk of adverse clinical outcomes. Methods: Datasets used: ‘DepChron’ was a dataset of 35,537 patients with existing cardiometabolic disease collected as a part of routine clinical practice. ‘Psobid’ was a research data source containing health related information from 666 participants recruited from the general population. The clinical outcomes for 3 both datasets were studied using electronic data linkage to hospital and mortality health records, undertaken by Information Services Division, Scotland. Cross-sectional associations between allostatic load biomarkers calculated at baseline, with clinical severity of depression assessed by a symptom score, were assessed using logistic and linear regression models in both datasets. Cox’s proportional hazards survival analysis models were used to assess the relationship of allostatic load biomarkers at baseline and the risk of adverse physical health outcomes at follow-up, in patients with depressive symptoms. The possibility of interaction between depressive symptoms and allostatic load biomarkers in risk prediction of adverse clinical outcomes was studied using the analysis of variance (ANOVA) test. Finally, the value of constructing a risk scoring scale using patient demographics and allostatic load biomarkers for predicting adverse outcomes in depressed patients was investigated using clinical risk prediction modelling and Area Under Curve (AUC) statistics. Key Results: Literature Review Findings. The literature review showed that twelve blood based peripheral biomarkers were statistically significant in predicting six different clinical outcomes in participants with depressive symptoms. Outcomes related to both mental health (depressive symptoms) and physical health were statistically associated with pre-treatment levels of peripheral biomarkers; however only two studies investigated outcomes related to physical health. Cross-sectional Analysis Findings: In DepChron, dysregulation of individual allostatic biomarkers (mainly cardiometabolic) were found to have a non-linear association with increased probability of co-morbid depressive symptoms (as assessed by Hospital Anxiety and Depression Score HADS-D≥8). A composite AI score constructed using five biomarkers did not lead to any improvement in the observed strength of the association. In Psobid, BMI was found to have a significant cross-sectional association with the probability of depressive symptoms (assessed by General Health Questionnaire GHQ-28≥5). BMI, triglycerides, highly sensitive C - reactive 4 protein (CRP) and High Density Lipoprotein-HDL cholesterol were found to have a significant cross-sectional relationship with the continuous measure of GHQ-28. A composite AI score constructed using 12 biomarkers did not show a significant association with depressive symptoms among Psobid participants. Longitudinal Analysis Findings: In DepChron, three clinical outcomes were studied over four years: all-cause death, all-cause hospital admissions and composite major adverse cardiovascular outcome-MACE (cardiovascular death or admission due to MI/stroke/HF). Presence of depressive symptoms and composite AI score calculated using mainly peripheral cardiometabolic biomarkers was found to have a significant association with all three clinical outcomes over the following four years in DepChron patients. There was no evidence of an interaction between AI score and presence of depressive symptoms in risk prediction of any of the three clinical outcomes. There was a statistically significant interaction noted between SBP and depressive symptoms in risk prediction of major adverse cardiovascular outcome, and also between HbA1c and depressive symptoms in risk prediction of all-cause mortality for patients with diabetes. In Psobid, depressive symptoms (assessed by GHQ-28≥5) did not have a statistically significant association with any of the four outcomes under study at seven years: all cause death, all cause hospital admission, MACE and incidence of new cancer. A composite AI score at baseline had a significant association with the risk of MACE at seven years, after adjusting for confounders. A continuous measure of IL-6 observed at baseline had a significant association with the risk of three clinical outcomes- all-cause mortality, all-cause hospital admissions and major adverse cardiovascular event. Raised total cholesterol at baseline was associated with lower risk of all-cause death at seven years while raised waist hip ratio- WHR at baseline was associated with higher risk of MACE at seven years among Psobid participants. There was no significant interaction between depressive symptoms and peripheral biomarkers (individual or combined) in risk prediction of any of the four clinical outcomes under consideration. Risk Scoring System Development: In the DepChron cohort, a scoring system was constructed based on eight baseline demographic and clinical variables to predict the risk of MACE over four years. The AUC value for the risk scoring system was modest at 56.7% (95% CI 55.6 to 57.5%). In Psobid, it was not possible to perform this analysis due to the low event rate observed for the clinical outcomes. Conclusion: Individual peripheral biomarkers were found to have a cross-sectional association with depressive symptoms both in patients with cardiometabolic disease and middle-aged participants recruited from the general population. AI score calculated with different statistical formulations was of no greater benefit in predicting concurrent depressive symptoms or clinical outcomes at follow-up, over and above its individual constituent biomarkers, in either patient cohort. SBP had a significant interaction with depressive symptoms in predicting cardiovascular events in patients with cardiometabolic disease; HbA1c had a significant interaction with depressive symptoms in predicting all-cause mortality in patients with diabetes. Peripheral biomarkers may have a role in predicting clinical outcomes in patients with depressive symptoms, especially for those with existing cardiometabolic disease, and this merits further investigation.
Resumo:
The service of a critical infrastructure, such as a municipal wastewater treatment plant (MWWTP), is taken for granted until a flood or another low frequency, high consequence crisis brings its fragility to attention. The unique aspects of the MWWTP call for a method to quantify the flood stage-duration-frequency relationship. By developing a bivariate joint distribution model of flood stage and duration, this study adds a second dimension, time, into flood risk studies. A new parameter, inter-event time, is developed to further illustrate the effect of event separation on the frequency assessment. The method is tested on riverine, estuary and tidal sites in the Mid-Atlantic region. Equipment damage functions are characterized by linear and step damage models. The Expected Annual Damage (EAD) of the underground equipment is further estimated by the parametric joint distribution model, which is a function of both flood stage and duration, demonstrating the application of the bivariate model in risk assessment. Flood likelihood may alter due to climate change. A sensitivity analysis method is developed to assess future flood risk by estimating flood frequency under conditions of higher sea level and stream flow response to increased precipitation intensity. Scenarios based on steady and unsteady flow analysis are generated for current climate, future climate within this century, and future climate beyond this century, consistent with the WWTP planning horizons. The spatial extent of flood risk is visualized by inundation mapping and GIS-Assisted Risk Register (GARR). This research will help the stakeholders of the critical infrastructure be aware of the flood risk, vulnerability, and the inherent uncertainty.
Resumo:
The U.S. Nuclear Regulatory Commission implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with results from nuclear power plant (NPP) probabilistic risk analyses (PRAs) to determine whether proposed regulatory actions are justified based on potential safety benefit. Lessons learned from recent operating experience—including the 2011 Fukushima accident—indicate that accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet risk contributions from such scenarios are excluded by policy from safety goal evaluations—even for the nearly 60% of U.S. NPP sites that include multiple units. This research develops and applies methods for estimating risk metrics for comparison with safety goal QHOs using models from state-of-the-art consequence analyses to evaluate the effect of including multi-unit accident risk contributions in safety goal evaluations.
Resumo:
For climate risk management, cumulative distribution functions (CDFs) are an important source of information. They are ideally suited to compare probabilistic forecasts of primary (e.g. rainfall) or secondary data (e.g. crop yields). Summarised as CDFs, such forecasts allow an easy quantitative assessment of possible, alternative actions. Although the degree of uncertainty associated with CDF estimation could influence decisions, such information is rarely provided. Hence, we propose Cox-type regression models (CRMs) as a statistical framework for making inferences on CDFs in climate science. CRMs were designed for modelling probability distributions rather than just mean or median values. This makes the approach appealing for risk assessments where probabilities of extremes are often more informative than central tendency measures. CRMs are semi-parametric approaches originally designed for modelling risks arising from time-to-event data. Here we extend this original concept beyond time-dependent measures to other variables of interest. We also provide tools for estimating CDFs and surrounding uncertainty envelopes from empirical data. These statistical techniques intrinsically account for non-stationarities in time series that might be the result of climate change. This feature makes CRMs attractive candidates to investigate the feasibility of developing rigorous global circulation model (GCM)-CRM interfaces for provision of user-relevant forecasts. To demonstrate the applicability of CRMs, we present two examples for El Ni ? no/Southern Oscillation (ENSO)-based forecasts: the onset date of the wet season (Cairns, Australia) and total wet season rainfall (Quixeramobim, Brazil). This study emphasises the methodological aspects of CRMs rather than discussing merits or limitations of the ENSO-based predictors.
Resumo:
An integrated analysis of naproxen adsorption on bone char in batch and packed-bed column conditions has been performed. Kinetic, thermodynamic and breakthrough parameters have been calculated using adsorption models and artificial neural networks. Results show that naproxen removal using bone char in batch conditions is a feasible and effective process, which could involve electrostatic and non-electrostatic interactions depending mainly on pH conditions. However, the application of packed-bed column for naproxen adsorption on bone char is not effective for the treatment of diluted solutions due to the low degree of adsorbent utilization (below 4%) at tested operating conditions. The proposed mechanism for naproxen removal using bone char could include a complexation process via phosphate and naproxen, hydrogen bonding and the possibility of hydrophobic interactions via π–π electron. This study highlights the relevance of performing an integrated analysis of adsorbent effectiveness in batch and dynamic conditions to establish the best process configuration for the removal of emerging water pollutants such as pharmaceuticals.
Resumo:
Multiple indices of biotic integrity and biological condition gradient models have been developed and validated to assess ecological integrity in the Laurentian Great Lakes Region. With multiple groups such as Tribal, Federal, and State agencies as well as scientists and local watershed management or river-focused volunteer groups collecting data for bioassessment it is important that we determine the comparability of data and the effectiveness of indices applied to these data for assessment of natural systems. We evaluated the applicability of macroinvertebrate and fish community indices for assessing site integrity. Site quality (i.e., habitat condition) could be classified differently depending on which index was applied. This highlights the need to better understand the metrics driving index variation as well as reference conditions for effective communication and use of indices of biotic integrity in the Upper Midwest. We found the macroinvertebrate benthic community index for the Northern Lakes and Forests Ecoregion and a coldwater fish index of biotic integrity for the Upper Midwest were most appropriate for use in the Big Manistee River watershed based on replicate sampling, ability to track trends over time and overall performance. We evaluated three sites where improper road stream crossings (culverts) were improved by replacing them with modern full-span structures using the most appropriate fish and macroinvertebrate IBIs. We used a before-after-control-impact paired series analytical design and found mixed results, with evidence of improvement in biotic integrity based on macroinvertebrate indices at some of the sites while most sites indicated no response in index score. Culvert replacements are often developed based on the potential, or the perception, that they will restore ecological integrity. As restoration practitioners, researchers and managers, we need to be transparent in our goals and objectives and monitor for those results specifically. The results of this research serve as an important model for the broader field of ecosystem restoration and support the argument that while biotic communities can respond to actions undertaken with the goal of overall restoration, practitioners should be realistic in their expectations and claims of predicted benefit, and then effectively evaluate the true impacts of the restoration activities.
Resumo:
Global climate change is predicted to have impacts on the frequency and severity of flood events. In this study, output from Global Circulation Models (GCMs) for a range of possible future climate scenarios was used to force hydrologic models for four case study watersheds built using the Soil and Water Assessment Tool (SWAT). GCM output was applied with either the "delta change" method or a bias correction. Potential changes in flood risk are assessed based on modeling results and possible relationships to watershed characteristics. Differences in model outputs when using the two different methods of adjusting GCM output are also compared. Preliminary results indicate that watersheds exhibiting higher proportions of runoff in streamflow are more vulnerable to changes in flood risk. The delta change method appears to be more useful when simulating extreme events as it better preserves daily climate variability as opposed to using bias corrected GCM output.
Resumo:
Current procedures for flood risk estimation assume flood distributions are stationary over time, meaning annual maximum flood (AMF) series are not affected by climatic variation, land use/land cover (LULC) change, or management practices. Thus, changes in LULC and climate are generally not accounted for in policy and design related to flood risk/control, and historical flood events are deemed representative of future flood risk. These assumptions need to be re-evaluated, however, as climate change and anthropogenic activities have been observed to have large impacts on flood risk in many areas. In particular, understanding the effects of LULC change is essential to the study and understanding of global environmental change and the consequent hydrologic responses. The research presented herein provides possible causation for observed nonstationarity in AMF series with respect to changes in LULC, as well as a means to assess the degree to which future LULC change will impact flood risk. Four watersheds in the Midwest, Northeastern, and Central United States were studied to determine flood risk associated with historical and future projected LULC change. Historical single framed aerial images dating back to the mid-1950s were used along with Geographic Information Systems (GIS) and remote sensing models (SPRING and ERDAS) to create historical land use maps. The Forecasting Scenarios of Future Land Use Change (FORE-SCE) model was applied to generate future LULC maps annually from 2006 to 2100 for the conterminous U.S. based on the four IPCC-SRES future emission scenario conditions. These land use maps were input into previously calibrated Soil and Water Assessment Tool (SWAT) models for two case study watersheds. In order to isolate effects of LULC change, the only variable parameter was the Runoff Curve Number associated with the land use layer. All simulations were run with daily climate data from 1978-1999, consistent with the 'base' model which employed the 1992 NLCD to represent 'current' conditions. Output daily maximum flows were converted to instantaneous AMF series and were subsequently modeled using a Log-Pearson Type 3 (LP3) distribution to evaluate flood risk. Analysis of the progression of LULC change over the historic period and associated SWAT outputs revealed that AMF magnitudes tend to increase over time in response to increasing degrees of urbanization. This is consistent with positive trends in the AMF series identified in previous studies, although there are difficulties identifying correlations between LULC change and identified change points due to large time gaps in the generated historical LULC maps, mainly caused by unavailability of sufficient quality historic aerial imagery. Similarly, increases in the mean and median AMF magnitude were observed in response to future LULC change projections, with the tails of the distributions remaining reasonably constant. FORE-SCE scenario A2 was found to have the most dramatic impact on AMF series, consistent with more extreme projections of population growth, demands for growing energy sources, agricultural land, and urban expansion, while AMF outputs based on scenario B2 showed little changes for the future as the focus is on environmental conservation and regional solutions to environmental issues.
Resumo:
Retaining walls are important assets in the transportation infrastructure and assessing their condition is important to prolong their performance and ultimately their design life. Retaining walls are often overlooked and only a few transportation asset management programs consider them in their inventory. Because these programs are few, the techniques used to assess their condition focus on a qualitative assessment as opposed to a quantitative approach. The work presented in this thesis focuses on using photogrammetry to quantitatively assess the condition of retaining walls. Multitemporal photogrammetry is used to develop 3D models of the retaining walls, from which offset displacements are measured to assess their condition. This study presents a case study from a site along M-10 highway in Detroit, MI were several sections of retaining walls have experienced horizontal displacement towards the highway. The results are validated by comparing with field observations and measurements. The limitations of photogrammetry were also studied by using a small scale model in the laboratory. The analysis found that the accuracy of the offset displacement measurements is dependent on the distance between the retaining wall and the sensor, location of the reference points in 3D space, and the focal length of the lenses used by the camera. These parameters were not ideal for the case study at the M-10 highway site, but the results provided consistent trends in the movement of the retaining wall that couldn’t be validated from offset measurements. The findings of this study confirm that photogrammetry shows promise in generating 3D models to provide a quantitative condition assessment for retaining walls within its limitations.
Resumo:
Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor’s ability to monitor nanotoxicity in real-time. Further, the EIS allowed rapid, real-time and multi-sample analysis creating a versatile, noninvasive tool that is able to provide quantitative information with respect to alteration in cellular function. We then extended the application of the unique capabilities of the EIS to do real-time analysis of cancer cell response to externally applied alternating electric fields at different intermediate frequencies and low-intensity. Decreases in the growth profiles of the ovarian and breast cancer cells were observed with the application of 200 and 100 kHz, respectively, indicating specific inhibitory effects on dividing cells in culture in contrast to the non-cancerous HUVECs and mammary epithelial cells. We then sought to enhance the effects of the electric field by altering the cancer cell’s electronegative membrane properties with HER2 antibody functionalized nanoparticles. An Annexin V/EthD-III assay and zeta potential were performed to determine the cell death mechanism indicating apoptosis and a decrease in zeta potential with the incorporation of the nanoparticles. With more negatively charged HER2-AuNPs attached to the cancer cell membrane, the decrease in membrane potential would thus leave the cells more vulnerable to the detrimental effects of the applied electric field due to the decrease in surface charge. Therefore, by altering the cell membrane potential, one could possibly control the fate of the cell. This whole cell-based biosensor will enhance our understanding of the responsiveness of cancer cells to electric field therapy and demonstrate potential therapeutic opportunities for electric field therapy in the treatment of cancer.