995 resultados para ALOHA2002-12-14
Resumo:
1893/12/14 (A17,N6081).
Resumo:
1904/12/14 (N10097,A27).
Resumo:
1912/12/14 (N3643,A29).
Resumo:
The present study evaluated the effect of non-absorbable oral polymyxin on the duodenal microflora and clinical outcome of infants with severe infectious diarrhea. Polymyxin was chosen because classic enteropathogenic Escherichia coli was more sensitive to this antibiotic. Twenty-five infants were randomly assigned to a 7-day treatment with oral polymyxin (2.5 mg/kg in 4 daily doses) or placebo. Duodenal and stool cultures were performed before and after the treatment. Five patients were excluded during the study because of introduction of parental antibiotic therapy due to clinical sepsis (N = 3) or rapid clinical improvement (N = 2). In the polymyxin group, small bowel bacterial overgrowth occurred in 61.5% of the cases (8/13) before treatment and in 76.9% (10/13) after treatment. In the placebo group these values were 71.4% (5/7) and 57.1% (4/7), respectively. By the 7th day, clinical cure was observed in 84.6% of the cases (11/13) in the polymyxin group and in 71.4% (5/7) in the placebo group (P = 0.587). Considering all 25 patients included in the study, clinical cure occurred on the 7th day in 12/14 cases (85.7%) in the polymyxin group and 6/11 cases (54.5%) in the placebo group (P = 0.102). Clinical sepsis occurred in 3/11 (27.3%) of the patients in the placebo group and in none (0/14) in the polymyxin group (P = 0.071). Oral polymyxin was not effective in reducing bacterial overgrowth or in improving the clinical outcome of infants hospitalized with severe infectious diarrhea. Taking into account the small sample size, the rate of cure on the 7th day and the rate of clinical sepsis, further studies with greater number of patients are necessary to evaluate these questions.
Resumo:
1916/12/14 (N14388,A40).
Resumo:
1921/12/14 (N16208,A45).
Resumo:
1886/12/14 (A20,N3524).
Resumo:
1911/12/14 (N12653,A34).
Resumo:
We compared the effect of three different exercise programs on patients with chronic obstructive pulmonary disease including strength training at 50_80% of one-repetition maximum (1-RM) (ST; N = 11), low-intensity general training (LGT; N = 13), or combined training groups (CT; N = 11). Body composition, muscle strength, treadmill endurance test (TEnd), 6-min walk test (6MWT), Saint George's Respiratory Questionnaire (SGRQ), and baseline dyspnea (BDI) were assessed prior to and after the training programs (12 weeks). The training modalities showed similar improvements (P > 0.05) in SGRQ-total (ST = 13 ± 14%; CT = 12 ± 14%; LGT = 11 ± 10%), BDI (ST = 1.8 ± 4; CT = 1.8 ± 3; LGT = 1 ± 2), 6MWT (ST = 43 ± 51 m; CT = 48 ± 50 m; LGT = 31 ± 75 m), and TEnd (ST = 11 ± 20 min; CT = 11 ± 11 min; LGT = 7 ± 5 min). In the ST and CT groups, an additional improvement in 1-RM values was shown (P < 0.05) compared to the LGT group (ST = 10 ± 6 to 57 ± 36 kg; CT = 6 ± 2 to 38 ± 16 kg; LGT = 1 ± 2 to 16 ± 12 kg). The addition of strength training to our current training program increased muscle strength; however, it produced no additional improvement in walking endurance, dyspnea or quality of life. A simple combined training program provides benefits without increasing the duration of the training sessions.
Resumo:
We microscopically and mechanically evaluated the femurs of rats subjected to hindlimb unloading (tail suspension) followed by treadmill training. Female Wistar rats were randomly divided into five groups containing 12-14 rats: control I (118 days old), control II (139 days old), suspended (tail suspension for 28 days), suspended-released (released for 21 days after 28 days of suspension), and suspended-trained (trained for 21 days after 28 days of suspension). We measured bone resistance by bending-compression mechanical tests of the entire proximal half of the femur and three-point bending tests of diaphyseal cortical bone. We determined bone microstructure by tetracycline labeling of trabecular and cortical bone. We found that tail suspension weakened bone (ultimate load = 86.3 ± 13.5 N, tenacity modulus = 0.027 ± 0.011 MPa·m vs ultimate load = 101.5 ± 10.5 N, tenacity modulus = 0.019 ± 0.006 MPa·m in control I animals). The tenacity modulus for suspended and released animals was 0.023 ± 0.010 MPa·m vs 0.046 ± 0.018 MPa·m for trained animals and 0.035 ± 0.010 MPa·m for control animals. These data indicate that normal activity and training resulted in recovered bone resistance, but suspended-released rats presented femoral head flattening and earlier closure of the growth plate. Microscopically, we found that suspension inhibited new bone subperiosteal and endosteal formation. The bone disuse atrophy secondary to hypoactivity in rats can be reversed by an early regime of exercising, which is more advantageous than ordinary cage activities alone.
Resumo:
1896/12/14 (N7176,A20).
Resumo:
1894/12/14 (N6446,A18).
Resumo:
1897/12/14 (N7541,A21).
Resumo:
1906/12/14 (N10827,A29).
Resumo:
1909/12/14 (N11923,A32).