980 resultados para ADULT-RATS
Resumo:
Increased levels of androgens in postmenopausal women are considered to be a risk factor for breast cancer. Testosterone, alone or in combination with estrogen, induces epithelial dysplasia and mammary tumors in Noble rats. Since this model of hormone-induced neoplasia has not been reported in other rat strains, we studied the effect of testosterone on the mammary gland morphology of female Wistar rats. Sixty adult, non-castrated, female Wistar rats were implanted in the dorsum midline with a silicone tube containing 50 mg testosterone (testosterone propionate in 30 animals and non-esterified testosterone in the remaining 30 animals) and 20 additional animals were implanted with empty tubes and used as control. Five animals per group were killed 30, 60, 90, 120, 150, and 180 days after implantation, and the mammary glands were dissected, fixed and embedded in paraffin. Histological sections were then stained with hematoxylin and eosin and picrosyrius red for collagen visualization. Morphological and morphometric analysis demonstrated ductal proliferation and acinotubular differentiation with secretory activity in all treated animals, peaking at 90 days of androgen exposure. After 90 days the proliferation of acinar epithelial cells was evident, but there was a progressive reduction of secretory differentiation and an increase in intralobular collagen fibers. There was no morphological evidence of dysplastic changes or other pre-neoplastic lesions. Testosterone treatment applied to adult, non-castrated female Wistar rats induced a mammary gland hyperplasia resembling the lactating differentiation, with progressive reduction in secretory differentiation.
Resumo:
Rats reared under isolation conditions from weaning present a number of behavioral changes compared to animals reared under social conditions (group housing). These changes include deficits in prepulse inhibition (PPI) of the startle reflex to a loud sound. PPI refers to the reduction of the magnitude of the startle reflex when a relatively weak stimulus (the prepulse) precedes by an appropriate time interval the intense startle-elicing stimulus (the pulse). PPI is useful for studying sensorimotor integration. The present study evaluated the effect of handling on the impairment of PPI induced by isolation-rearing. Male Wistar rats (N = 11-15/group) were housed in groups (5 per cage and handled three times a week) or isolated (housed individually) since weaning (21 days) for 10 weeks when they reach approximately 150 g. The isolated rats were divided into "minimally handled" animals (handled once a week for cleaning purposes only) or "handled" animals (handled three times a week). This handling consisted of grasping the rat by the tail and moving it to a clean cage (approximately 5 s). A statistically significant reduction (52%) in the PPI test was found only in the isolated group with minimal handling while no difference was seen between grouped animals and isolated handled animals. These results indicate that isolation rearing causes disruption in the PPI at adult age, which serves as an index of attention deficit. This change in the sensory processing of information induced by post-weaning isolation can be prevented by handling during the development of the animal.
Resumo:
Schwann cell disturbance followed by segmental demyelination in the peripheral nervous system occurs in diabetic patients. Since Schwann cell and oligodendrocyte remyelination in the central nervous system is a well-known event in the ethidium bromide (EB) demyelinating model, the aim of this investigation was to determine the behavior of both cell types after local EB injection into the brainstem of streptozotocin diabetic rats. Adult male Wistar rats received a single intravenous injection of streptozotocin (50 mg/kg) and were submitted 10 days later to a single injection of 10 µL 0.1% (w/v) EB or 0.9% saline solution into the cisterna pontis. Ten microliters of 0.1% EB was also injected into non-diabetic rats. The animals were anesthetized and perfused through the heart 7 to 31 days after EB or saline injection and brainstem sections were collected and processed for light and transmission electron microscopy. The final balance of myelin repair in diabetic and non-diabetic rats at 31 days was compared using a semi-quantitative method. Diabetic rats presented delayed macrophage activity and lesser remyelination compared to non-diabetic rats. Although oligodendrocytes were the major remyelinating cells in the brainstem, Schwann cells invaded EB-induced lesions, first appearing at 11 days in non-diabetic rats and by 15 days in diabetic rats. Results indicate that short-term streptozotocin-induced diabetes hindered both oligodendrocyte and Schwann cell remyelination (mean remyelination scores of 2.57 ± 0.77 for oligodendrocytes and 0.67 ± 0.5 for Schwann cells) compared to non-diabetic rats (3.27 ± 0.85 and 1.38 ± 0.81, respectively).
Resumo:
Both the peripheral sympatho-adrenomedullary and central catecholaminergic systems are activated by various psycho-social and physical stressors. Catecholamine stores in the hypothalamus, hippocampus, adrenal glands, and heart auricles of long-term socially isolated (21 days) and control 3-month-old male Wistar rats, as well as their response to immobilization of all 4 limbs and head fixed for 2 h and cold stress (4ºC, 2 h), were studied. A simultaneous single isotope radioenzymatic assay based on the conversion of catecholamines to the corresponding O-methylated derivatives by catechol-O-methyl-transferase in the presence of S-adenosyl-l-(³H-methyl)-methionine was used. The O-methylated derivatives were oxidized to ³H-vanilline and the radioactivity measured. Social isolation produced depletion of hypothalamic norepinephrine (about 18%) and hippocampal dopamine (about 20%) stores and no changes in peripheral tissues. Immobilization decreased catecholamine stores (approximately 39%) in central and peripheral tissues of control animals. However, in socially isolated rats, these reductions were observed only in the hippocampus and peripheral tissues. Cold did not affect hypothalamic catecholamine stores but reduced hippocampal dopamine (about 20%) as well as norepinephrine stores in peripheral tissues both in control and socially isolated rats, while epinephrine levels were unchanged. Thus, immobilization was more efficient in reducing catecholamine stores in control and chronically isolated rats compared to cold stress. The differences in rearing conditions appear to influence the response of adult animals to additional stress. In addition, the influence of previous exposure to a stressor on catecholaminergic activity in the brainstem depends on both the particular catecholaminergic area studied and the properties of additional acute stress. Therefore, the sensitivity of the catecholaminergic system to habituation appears to be tissue-specific.
Resumo:
The present study was carried out in order to compare the effects of administration of organic (methylmercury, MeHg) and inorganic (mercury chloride, HgCl 2 ) forms of mercury on in vivo dopamine (DA) release from rat striatum. Experiments were performed in conscious and freely moving female adult Sprague-Dawley (230-280 g) rats using brain microdialysis coupled to HPLC with electrochemical detection. Perfusion of different concentrations of MeHg or HgCl 2 (2 µL/min for 1 h, N = 5-7/group) into the striatum produced significant increases in the levels of DA. Infusion of 40 µM, 400 µM, or 4 mM MeHg increased DA levels to 907 ± 31, 2324 ± 156, and 9032 ± 70% of basal levels, respectively. The same concentrations of HgCl 2 increased DA levels to 1240 ± 66, 2500 ± 424, and 2658 ± 337% of basal levels, respectively. These increases were associated with significant decreases in levels of dihydroxyphenylacetic acid and homovallinic acid. Intrastriatal administration of MeHg induced a sharp concentration-dependent increase in DA levels with a peak 30 min after injection, whereas HgCl 2 induced a gradual, lower (for 4 mM) and delayed increase in DA levels (75 min after the beginning of perfusion). Comparing the neurochemical profile of the two mercury derivatives to induce increases in DA levels, we observed that the time-course of these increases induced by both mercurials was different and the effect produced by HgCl 2 was not concentration-dependent (the effect was the same for the concentrations of 400 µM and 4 mM HgCl 2 ). These results indicate that HgCl 2 produces increases in extracellular DA levels by a mechanism differing from that of MeHg.
Resumo:
The metabolic effects of carbohydrate supplementation in mice have not been extensively studied. In rats, glucose- and fructose-rich diets induce hypertriacylglycerolemia. In the present study, we compared the metabolic responses to two monosaccharide supplementations in two murine models. Adult male Wistar rats (N = 80) and C57BL/6 mice (N = 60), after 3 weeks on a standardized diet, were submitted to dietary supplementation by gavage with glucose (G) or fructose (F) solutions (500 g/L), 8 g/kg body weight for 21 days. Glycemia was significantly higher in rats after fructose treatment (F: 7.9 vs 9.3 mM) and in mice (G: 6.5 vs 10 and F: 6.6 vs 8.9 mM) after both carbohydrate treatments. Triacylglycerolemia increased significantly 1.5 times in rats after G or F supplementation. Total cholesterol did not change with G treatment in rats, but did decrease after F supplementation (1.5 vs 1.4 mM, P < 0.05). Both supplementations in rats induced insulin resistance, as suggested by the higher Homeostasis Model Assessment Index. In contrast, mice showed significant decreases in triacylglycerol (G: 1.8 vs 1.4 and F: 1.9 vs 1.4 mM, P < 0.01) and total cholesterol levels (G and F: 2.7 vs 2.5 mM, P < 0.05) after both monosaccharide supplementations. Wistar rats and C57BL/6 mice, although belonging to the same family (Muridae), presented opposite responses to glucose and fructose supplementation regarding serum triacylglycerol, free fatty acids, and insulin levels after monosaccharide treatment. Thus, while Wistar rats developed features of plurimetabolic syndrome, C57BL/6 mice presented changes in serum biochemical profile considered to be healthier for the cardiovascular system.
Resumo:
The aim of the present study was to assess the reproductive parameters of obese Wistar rats and to determine the frequency of their obese adult offspring. Neonatal rats were divided into two groups: F1 generation, induced to obesity by monosodium glutamate (MSG; F1MSG, N = 30), and rats given saline (F1CON, N = 13). At 90 days of age all animals were mated, producing the F2 offspring (F2CON, N = 28; F2MSG, N = 15). Reproductive parameters (fertility, pregnancy, and delivery indexes) were evaluated in F1 rats. F2 newborns were weighed, and the obesity parameter for F1 and F2 generations was determined from months 5 to 7 of life. At month 7, periovarian fat was weighed and no differences were found. Mean newborn weight also did not differ. The F1 and F2MSG groups presented approximately 90% of obese rats since month 5 of life, whereas F1 and F2CON groups presented only 33%. There was no difference in periovarian weight among groups. Although obesity did not affect reproductive parameters, obese dams (F1MSG) were responsible for the appearance of obesity in the subsequent generation. Thus, obesity induced by neonatal MSG administration did not interfere with reproduction, but did provide a viable model for obesity in second-generation adult Wistar rats. This model might contribute to a better understanding of the pathophysiological mechanisms involved in transgenerational obesity.
Resumo:
The effect of N-acetylcysteine, a thiolic antioxidant, on attenuation of phosphamidon-induced oxidative stress and immune dysfunction was evaluated in adult male Wistar rats weighing 200-250 g. Rats were divided into four groups, 8 animals/group, and treated with phosphamidon, N-acetylcysteine or the combination of both for 28 days. Oral administration of phosphamidon (1.74 mg/kg), an organophosphate insecticide, increased serum malondialdehyde (3.83 ± 0.18 vs 2.91 ± 0.24 nmol/mL; P < 0.05) and decreased erythrocyte superoxide dismutase (567.8 ± 24.36 vs 749.16 ± 102.61 U/gHb; P < 0.05), catalase activity (1.86 ± 0.18 vs 2.43 ± 0.08 U/gHb; P < 0.05) and whole blood glutathione levels (1.25 ± 0.21 vs 2.28 ± 0.08 mg/gHb; P < 0.05) showing phosphamidon-induced oxidative stress. Phosphamidon exposure markedly suppressed humoral immune response as assessed by antibody titer to ovalbumin (4.71 ± 0.51 vs 8.00 ± 0.12 -log2; P < 0.05), and cell-mediated immune response as assessed by leukocyte migration inhibition (25.24 ± 1.04 vs 70.8 ± 1.09%; P < 0.05) and macrophage migration inhibition (20.38 ± 0.99 vs 67.16 ± 5.30%; P < 0.05) response. Phosphamidon exposure decreased IFN-у levels (40.7 ± 3.21 vs 55.84 ± 3.02 pg/mL; P < 0.05) suggesting a profound effect of phosphamidon on cell-mediated immune response. A phosphamidon-induced increase in TNF-α level (64.19 ± 6.0 vs 23.16 ± 4.0 pg/mL; P < 0.05) suggests a contributory role of immunocytes in oxidative stress. Co-administration of N-acetylcysteine (3.5 mmol/kg, orally) with phosphamidon attenuated the adverse effects of phosphamidon. These findings suggest that oral N-acetylcysteine treatment exerts protective effect and attenuates free radical injury and immune dysfunction caused by subchronic phosphamidon exposure.
Resumo:
Diabetes in spontaneously hypertensive rats is associated with cortical renal GLUT1 and GLUT2 overexpression. Our objective was to evaluate the effect of the angiotensin-converting enzyme blockade on cortical renal GLUT1 and GLUT2 expression, urinary albumin and urinary TGF-β1. Streptozotocin, 50 mg/kg, or citrate buffer (N = 16) was administered as a single injection into the tail vein in adult spontaneously hypertensive rats (~260 g). Thirty days later, these diabetic spontaneously hypertensive rats received ramipril by gavage: 0.01 mg·kg-1·day-1 (D0.01, N = 14), 1 mg·kg-1·day-1 (D1, N = 9) or water (D, N = 11) for 15 days. Albumin and TGF-β1 (24-h urine), direct arterial pressure, renal tissue angiotensin-converting enzyme activity (fluorometric assay), and GLUT1 and GLUT2 protein levels (Western blot, renal cortex) were determined. Glycemia and glycosuria were higher (P < 0.05) in the diabetic rats compared with controls, but similar between the diabetic groups. Diabetes in spontaneously hypertensive rats lowered renal tissue angiotensin-converting enzyme activity (40%), which was reduced further when higher ramipril doses were used. Diabetes associated with hypertension raised GLUT1 by 28% (P < 0.0001) and GLUT2 by 76% (P = 0.01), and both doses of ramipril equally reduced cortical GLUT1 (D vs D1 and vs D0.01, P ≤ 0.001). GLUT2 levels were reduced in D0.01 (P < 0.05 vs D). Diabetes increased urinary albumin and TGF-β1 urinary excretion, but the 15-day ramipril treatment (with either dose) did not reduce them. In conclusion, ramipril is effective in lowering renal tissue angiotensin-converting enzyme activity, as well as blocking cortical GLUT1 overexpression, which may be beneficial in arresting the development of diabetic nephropathy.
Resumo:
A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17% protein (normal-protein diet; NP) or 6% protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65%) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30% reduction in insulin receptor substrate-1 and a 70% increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43% in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71% in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined.
Resumo:
7-Nitroindazole (7-NI) inhibits neuronal nitric oxide synthase in vivo and reduces l-DOPA-induced dyskinesias in a rat model of parkinsonism. The aim of the present study was to determine if the anti-dyskinetic effect of 7-NI was subject to tolerance after repeated treatment and if this drug could interfere with the priming effect of l-DOPA. Adult male Wistar rats (200-250 g) with unilateral depletion of dopamine in the substantia nigra compacta were treated with l-DOPA (30 mg/kg) for 34 days. On the 1st day, 6 rats received ip saline and 6 received ip 7-NI (30 mg/kg) before l-DOPA. From the 2nd to the 26th day, all rats received l-DOPA daily and, from the 27th to the 34th day, they also received 7-NI before l-DOPA. Animals were evaluated before the drug and 1 h after l-DOPA using an abnormal involuntary movement scale and a stepping test. All rats had a similar initial motor deficit. 7-NI decreased abnormal involuntary movement induced by l-DOPA and the effect was maintained during the experiment before 7-NI, median (interquartile interval), day 26: 16.75 (15.88-17.00); day 28: 0.00 (0.00-9.63); day 29: 13.75 (2.25-15.50); day 30: 0.5 (0.00-6.25); day 31: 4.00 (0.00-7.13), and day 34: 0.5 (0.00-14.63), Friedman followed by Wilcoxon test,vs day 26, P < 0.05;. The response to l-DOPA alone was not modified by the use of 7-NI before the first administration of the drug (l-DOPA vs time interaction, F1,10 = 1.5, NS). The data suggest that tolerance to the anti-dyskinetic effects of a neuronal nitric oxide synthase inhibitor does not develop over a short-term period of repeated administration. These observations open a possible new therapeutic approach to motor complications of chronic l-DOPA therapy in patients with Parkinson’s disease.
Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats
Resumo:
This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.
Resumo:
This study examined the food intake changes evoked by intracerebroventricular (icv) injection of a selective agonist (BRL37344, 2 and 20 nmol) or antagonist (SR59230A, 10 and 50 nmol) of β3-adrenergic receptors in 24-h fasted rats (adult male Wistar rats, 200-350 g, N = 6/treatment). The animals were also pretreated with saline icv (SAL) or SR59230A (50 nmol) followed by BRL37344 (20 nmol) or SAL in order to determine the selectivity of the effects evoked by BRL37344 on food intake or the selectivity of the effects evoked by SR59230A on risk assessment (RA) behavior. The highest dose of BRL37344 (N = 7) decreased food intake 1 h after the treatment (6.4 ± 0.5 g in SAL-treated vs 4.2 ± 0.8 g in drug-treated rats). While both doses of SR59230A failed to affect food intake (5.1 ± 1.1 g for 10 nmol and 6.0 ± 1.8 g for 50 nmol), this treatment reduced the RA frequency (number/30 min) (4 ± 2 for SAL-treated vs 1 ± 1 for 10 nmol and 0.5 ± 1 for 50 nmol SR59230A-treated rats), an ethological parameter related to anxiety. While pretreatment with SR59230A (7.0 ± 0.5 g) abolished the hypophagia induced by BRL37344 (3.6 ± 0.9 g), BRL37344 suppressed the reduction in RA frequency caused by SR59230A. These results show that the hypophagia caused by BRL37344 is selectively mediated by β3-adrenergic receptors within the central nervous system. Moreover, they suggest the involvement of these receptors in the control of anxiety.
Resumo:
We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.
Resumo:
Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration.