937 resultados para ADENINE CLUSTERS
Resumo:
We consider the Gierer-Meinhardt system with precursor inhomogeneity in a one-dimensional interval. A spike cluster is the combination of several spikes which all approach the same point in the singular limit of small activator diffusivity. We rigorously prove the existence of a steady-state spike cluster consisting of N spikes near a non-degenerate local minimum point of the smooth inhomogeneity, where N is an arbitrary positive integer. Further, we show that this solution is linearly stable. We explicitly compute all eigenvalues, both large (of order O(1)) and small (of order o(1)). The main features of studying the Gierer-Meinhardt system in this setting are as follows: (i) it is biologically relevant since it models a hierarchical process (pattern formation of small-scale structures induced by a pre-existing large-scale inhomogeneity), (ii) it contains three different spatial scales two of which are small. (iii) all the expressions can be made explicit and often have a particularly simple form.
Resumo:
Mestrado em Gestão e Estratégia Industrial
Resumo:
Purpose – This paper aims to marry Michael Porter’s industrial cluster theory of traded and local clusters to Richard Florida’s occupational approach of creative and routine workers to gain a better understanding of the process of economic development. Design/methodology/approach – Combining these two approaches, four major industrial-occupational categories are identified. The shares of US employment in each – creative-in-traded, creative-in-local, routine-in-traded and routine-in-local – are calculated, and a correlation analysis is used to examine the relationship of each to regional economic development indicators. Findings – Economic growth and development is positively related to employment in the creative-in-traded category. While metros with a higher share of creative-in-traded employment enjoy higher wages and incomes overall, these benefits are not experienced by all worker categories. The share of creative-in-traded employment is also positively and significantly associated with higher inequality. After accounting for higher median housing costs, routine workers in both traded and local industries are found to be relatively worse off in metros with high shares of creative-in-traded employment, on average. Social implications – This work points to the imperative for the US Government and industry to upgrade routine jobs, which make up the majority of all employment, by increasing the creative content of this work. Originality/value – The research is among the first to systematically marry the industry and occupational approaches to clusters and economic development.
Resumo:
Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/ organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.
Resumo:
Nucleobase-functionalized polymers are widely used in the fields of supramolecular chemistry and self-assembly, and their development for biomedical applications is also an area of interest. They are usually synthesized by tedious multistep procedures. In this study, we assess adenine as an organoinitiator/organocatalyst for the ring-opening polymerization of lactide. L-Lactide can be quantitatively polymerized in the presence of adenine. Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine end-capped polylactide in a simple one-step procedure, in bulk, without additional catalyst. DFT calculations show that the polymerization occurs via hydrogen bond catalysis. The mechanism involves (i) a hydrogen bond between the NH9 of adenine and the carbonyl moiety of lactide, leading to an electron deficient carbon atom, and (ii) a second hydrogen bond between the N3 of adenine and the NH2 of a second adenine molecule, followed by a nucleophilic attack of the latter activated amine on the former electron deficient carbon on the monomer. For longer reaction times and higher temperatures, macrocyclic species are formed, and a mechanism involving the imidazole ring of adenine is proposed based on literature studies. Depending on the reaction conditions, adenine can thus be considered as an organoinitiator or an organocatalyst for the ring-opening polymerization of lactide.
Resumo:
The use of organic molecules as catalysts for the ring-opening polymerization (ROP) of cyclic esters has gained much interest last years.[1] The use of a molecule of biological interest, able to initiate ROP of cyclic esters without any cocatalyst is even more interesting, as the resulting material will not contain any catalytic residue. Nucleobase-polymer conjugates development is thus an emerging area envisaging biomedical applications.[2] However, they are usually synthesized by tedious multistep procedures. Recently, adenine was used as organoinitiator for the ROP of L-lactide.[3] Reaction conditions involving short reaction times and relatively low temperatures enable the access to adenine-polylactide(Adn-PLA)conjugates in a simple one-step procedure, without additional catalyst and in the absence of solvent. In this study, computational investigations with density functional theory (DFT) were performed in order to clarify the reaction mechanism leading to the desired Adn-PLA. The results show that a hydrogen bond catalytic mechanism, involving a nucleophilic attack of the activated amine group of adenine onto the carbonyl group of lactide, seem to be plausible.
Resumo:
Los modelos de gestión empresarial deben estar en constante actualización según las diversas exigencias del entorno globalizador, razón por la cual, las micro y pequeñas empresas requieren de una visión estratégica y de generación de calidad y oportunidad en los productos y servicios que deben ofrecer. Para esto, requiere una capacidad de romper los paradigmas de gestión que le funcionaron en otros momentos de la historia, para poder enfrentar las exigencias del entorno actual. Dentro de éste escenario de mercado, se encuentran muchas micro y pequeñas empresas dedicadas a la actividad del turismo, y particularmente del turismo rural, sector que es uno de los más dinámico en las economías que han generado estrategias para estimularlo y conservarlo; unas de esas estrategias de organización son la conformación de clusters y los encadenamientos productivos, los cuales son empresas que se encuentran dentro de un mismo sector y en una determinada zona geográfica, con el propósito de optimizar sus recursos y brindar servicio integrado y mejor al segmento de mercado que atienden.Palabras claves: Turismo rural, clusters, encadenamientos productivos, micro y pequeñas empresas, gestión turística.Abstracts: Business management models must be under continuous updating to keep up with the different requirements from a globalizing environment. For this reason micro and small businesses need a strategic vision and the generation of quality and opportunity in the products and services they must offer. To accomplish this end, they need the capacity to break management models that worked in other times of history, to be able to meet all the challenges from the current environment. It is within this market scenario that many micro and small businesses are found, businesses that are dedicated to the activity of tourism, and particularly rural tourism, a sector which happens to be one of the most dynamic in the economies that have generated strategies to stimulate it and keep it; one of these organization strategies are the design of clusters and productive chains, that are those businesses found within one single sector and in a particular geographical region, in order to optimize its resources and be able to give an integrated and better service to the market segment they serve.Key words: Rural, tourism., clusters, productive chains, micro and small businesses., tourism management.
Resumo:
2011
Resumo:
This Thesis aims at presenting the general results achieved during my PhD, that was focused on the study and characterisation of new homoleptic and heteroleptic metal carbonyl clusters. From a dimensional point of view, the nuclearity of such species ranges from 2 to 44 metal atoms. Lower nuclearity compounds may be viewed as polymetallic complexes, whereas higher nuclearity species can reach the nanocluster size, by resembling to ultrasmall nanoparticles (USNPs). Initially, my research was focused on the investigation of small MCCs stabilised by N-Heterocyclic carbene (NHCs) ligands. At this regard, a general strategy for the synthesis of mono-anionic [Fe(CO)4(MNHC)]− and neutral Fe(CO)4(MNHC)2, Co(CO)4(MNHC) (M = Cu, Ag, Au; NHC = IMes, IPr) species has been developed. Furthermore, during this investigation, neutral trimetallic Fe(CO)4(MNHC)(M’NHC) (M, M’ = Cu, Ag, Au; M ≠ M'; NHC = IPr) and neutral heteroleptic Fe(CO)4(MNHC)(MNHC’) (M = Au; NHC = IMes, IPr) compounds have been isolated. Thermal treatment turned out to be an efficient method for the growth of the dimension of MCCs. Indeed, species of the type [M3Fe3(CO)12]3– and [M4Fe4(CO)16]4– (M = Ag, Au) as well as larger clusters were formed during the thermal treatment of the new Fe-M (M = Ag, Cu, Au) carbonyl compounds. These species inspired the investigation of promising reaction paths for the synthesis of Fe-M (M = Ag, Cu, Au) carbonyl compounds devoid of ancillary ligands and alloy MCCs, such as the heterometallic [MxM’5-xFe4(CO)16]3− (M, M' = Cu, Ag, Au; M ≠ M'; x = 0-5) carbonyl clusters. The second part of this Thesis regards high nuclearity MCCs. In particular, new strategies for the growth of platinum carbonyl clusters involving, for instance, the employment of bidentate phosphines are described, as well as the syntheses and the thermal decomposition of new Ni-M (Pd, Pt) carbonyl clusters.
Resumo:
The aim of the present work is to gain new insights into the formation mechanism of CdTe magic-sized clusters (MSCs) at low temperatures, as well as on their evolution towards 1D and 2D nanostructures and assemblies thereof, under mild reaction conditions. The reaction system included toluene as solvent, octylamine as primary alkylamine, trioctylphosphine-Te as chalcogenide precursor and Cd(oleate)2 as metal precursor. UV-Vis absorption spectroscopy and transmission electron microscopy (TEM) were used to analyze samples containing concentrations of octylamine of 0.2, 0.8 and 2 M: well-defined, sharp absorption peaks were observed, with peaks maxima at 449, 417 and 373 nm respectively, and 1D structures with a string-like appearance were displayed in the TEM images. Investigating peaks growth, step-wise peaks shift to lower energies and reverse, step-wise peak shift to higher energies allowed to propose a model to describe the system, based on interconnected [CdTe]x cluster units originating an amine-capped, 1-dimensional, polymer-like structure, in which different degrees of electronic coupling between the clusters are held responsible for the different absorption transitions. The many parameters involved in the synthesis procedure were then investigated, starting from the Cd:Te ratio, the role of the amine, the use of different phosphine-Te and Cd precursors. The results allowed to gain important information of the reaction mechanism, as well as on the different behavior of the species featuring the sharp absorption peaks in each case. Using Cd(acetate)2 as metal precursor, 2D structures were found to evolve from the MSCs solutions over time, and their tendency to self-assemble was then analyzed employing two amines of different alkyl chain length, octylamine (C-8) and oleylamine (C-18). Their co-presence led to the formation of free-floating triangular nanosheets, which tend to readily aggregate if only octylamine is present in solution.
Resumo:
Diffuse radio emission in galaxy clusters has been observed with different size and properties. Giant radio halos (RH), Mpc-size sources found in merging clusters, and mini halos (MH), 0.1-0.5 Mpc size sources located in relaxed cool-core clusters, are thought to be distinct classes of objects with different formation mechanisms. However, recent observations have revealed the unexpected presence of diffuse emission on Mpc-scales in relaxed clusters that host a central MH and show no signs of major mergers. The study of these sources is still at the beginning and it is not yet clear what could be the origin of their unusual emission. The main goal of this thesis is to test the occurrence of these peculiar sources and investigate their properties using low frequency radio observations. This thesis consists in the study of a sample of 12 cool-core galaxy clusters which present some level of dynamical disturbances on large-scale. The heterogeneity of sources in the sample allowed me to investigate under which conditions a halo-type emission is present in MH clusters; and also to study the connection between AGN bubbles and the local environment. Using high sensitivity LOFAR observations, I have detected large-scale emission in four non-merging clusters, in addition to the central MH. I have constrained for the first time the spectral properties of diffuse emission in these double radio component galaxy clusters, and I have investigated the connection between their thermal and non-thermal emission for a better comprehension of the acceleration mechanism. Furthermore, I derived upper limits to the halo power for the other clusters in the sample, which could present large-scale diffuse emission under the detection threshold. Finally, I have reconstructed the duty-cycle of one of the most powerful AGN known, located at the centre of a galaxy cluster of the sample.
Resumo:
High Energy efficiency and high performance are the key regiments for Internet of Things (IoT) end-nodes. Exploiting cluster of multiple programmable processors has recently emerged as a suitable solution to address this challenge. However, one of the main bottlenecks for multi-core architectures is the instruction cache. While private caches fall into data replication and wasting area, fully shared caches lack scalability and form a bottleneck for the operating frequency. Hence we propose a hybrid solution where a larger shared cache (L1.5) is shared by multiple cores connected through a low-latency interconnect to small private caches (L1). However, it is still limited by large capacity miss with a small L1. Thus, we propose a sequential prefetch from L1 to L1.5 to improve the performance with little area overhead. Moreover, to cut the critical path for better timing, we optimized the core instruction fetch stage with non-blocking transfer by adopting a 4 x 32-bit ring buffer FIFO and adding a pipeline for the conditional branch. We present a detailed comparison of different instruction cache architectures' performance and energy efficiency recently proposed for Parallel Ultra-Low-Power clusters. On average, when executing a set of real-life IoT applications, our two-level cache improves the performance by up to 20% and loses 7% energy efficiency with respect to the private cache. Compared to a shared cache system, it improves performance by up to 17% and keeps the same energy efficiency. In the end, up to 20% timing (maximum frequency) improvement and software control enable the two-level instruction cache with prefetch adapt to various battery-powered usage cases to balance high performance and energy efficiency.
Resumo:
The presence of multiple stellar populations in globular clusters (GCs) is now well accepted, however, very little is known regarding their origin. In this Thesis, I study how multiple populations formed and evolved by means of customized 3D numerical simulations, in light of the most recent data from spectroscopic and photometric observations of Local and high-redshift Universe. Numerical simulations are the perfect tool to interpret these data: hydrodynamic simulations are suited to study the early phases of GCs formation, to follow in great detail the gas behavior, while N-body codes permit tracing the stellar component. First, we study the formation of second-generation stars in a rotating massive GC. We assume that second-generation stars are formed out of asymptotic giant branch stars (AGBs) ejecta, diluted by external pristine gas. We find that, for low pristine gas density, stars mainly formed out of AGBs ejecta rotate faster than stars formed out of more diluted gas, in qualitative agreement with current observations. Then, assuming a similar setup, we explored whether Type Ia supernovae affect the second- generation star formation and their chemical composition. We show that the evolution depends on the density of the infalling gas, but, in general, an iron spread is developed, which may explain the spread observed in some massive GCs. Finally, we focused on the long-term evolution of a GC, composed of two populations and orbiting the Milky Way disk. We have derived that, for an extended first population and a low-mass second one, the cluster loses almost 98 percent of its initial first population mass and the GC mass can be as much as 20 times less after a Hubble time. Under these conditions, the derived fraction of second-population stars reproduces the observed value, which is one of the strongest constraints of GC mass loss.
Resumo:
Turbulence introduced into the intra-cluster medium (ICM) through cluster merger events transfers energy to non-thermal components (relativistic particles and magnetic fields) and can trigger the formation of diffuse synchrotron radio sources. Owing to their steep synchrotron spectral index, such diffuse sources can be better studied at low radio frequencies. In this respect, the LOw Frequency ARray (LOFAR) is revolutionizing our knowledge thanks to its unprecedented resolution and sensitivity below 200 MHz. In this Thesis we focus on the study of radio halos (RHs) by using LOFAR data. In the first part of this work we analyzed the largest-ever sample of galaxy clusters observed at radio frequencies. This includes 309 Planck clusters from the Second Data Release of the LOFAR Two Metre Sky Survey (LoTSS-DR2), which span previously unexplored ranges of mass and redshift. We detected 83 RHs, half of which being new discoveries. In 140 clusters we lack a detected RH; for this sub-sample we developed new techniques to derive upper limits to their radio powers. By comparing detections and upper limits, we carried out the first statistical analysis of populations of clusters observed at low frequencies and tested theoretical formation models. In the second part of this Thesis we focused on ultra-steep spectrum radio halos. These sources are almost undetected at GHz frequencies, but are thought to be common at low frequencies. We presented LOFAR observations of two interesting clusters hosting ultra-steep spectrum radio halos. With complementary radio and X-ray observations we constrained the properties and origin of these targets.