1000 resultados para 270500 Zoology
Resumo:
Despite several studies on adult amphibians, only larvae of the striped marsh frog (Limnodynastes peronii) have been reported to possess the ability to compensate for the effects of cool temperature on locomotor performance by thermal acclimation. In this study, we investigated whether this thermal acclimatory ability is shared by adult L. peronii. We exposed adult L. peronii to either 18 or 30 degrees C for 8 weeks and tested their swimming and jumping performance at six temperatures between 8 and 35 degrees C. Acute changes in temperature affected both maximum swimming and jumping performance, however there was no difference between the two treatment groups in locomotor performance between 8 and 30 degrees C. Maximum swimming velocity of both groups increased from 0.62 +/- 0.02 at 8 degrees C to 1.02 +/- 0.03 m s(-1) at 30 degrees C, while maximum jump distance increased from similar to 20 to > 60 cm over the same temperature range. Although adult L. peronii acclimated to 18 degrees C failed to produce a locomotor response at 35 degrees C, this most likely reflected a change in thermal tolerance limits with acclimation rather than modifications in the locomotor system. As all adult amphibians studied to date are incapable of thermally acclimating locomotor performance, including adults of L. peronii, this acclimatory capacity appears to be absent from the adult stage of development. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
Incubation temperature influences embryonic development and the morphology of resultant hatchlings in many species of turtle but few studies have addressed its effect on oxygen consumption and total embryonic energy expenditure. Eggs of the Australian broad-shelled river turtle, Chelodina expansa, were incubated at constant temperatures of 24 degrees C and 28 degrees C to determine the effect of temperature on oxygen consumption, embryonic energy expenditure and hatchling morphology. All embryos at both incubation temperatures experienced a period of developmental diapause immediately after oviposition. Once this initial diapause was broken, embryos underwent a further period of developmental arrest when the embryo was still very small and had minimal oxygen consumption (
Resumo:
Caterpillars of Euploea core corinna (W. S. Macleay) sever leaf veins prior to feeding on their latex-bearing host plants, which restricts the flow of latex at feeding sites. The severing of leaf veins by insects feeding on latex-bearing plants is commonly referred to as 'sabotaging' and is thought to be an evolved response by the insect to counter the negative effects of feeding on latex-rich leaves. Sabotaging behaviour is described for all instars of E. core corinna, with particular attention given to neonates. Vein cutting by neonate E. core corinna caterpillars can occur within 2 h of hatching, with most caterpillars establishing feeding sites within 10 h. Commonly, first instars cut an are-shaped row of leaf side-veins parallel to the leaf margin, but they may also cut the leaf mid-rib in a fashion similar to older instar larvae. From a sample of 50 E. core corinna larvae, representing all instars, we found that the diameters of the veins cut by caterpillars are closely correlated to larval head width (r=0.90). Through manipulative experiments, we demonstrate for the first time that sabotaging behaviour in neonate caterpillars imposes no detectable short-term physiological costs on those caterpillars.
Resumo:
Lizards and birds are both popular model organisms in behavioural ecology, but the interactions between them have attracted little study. Given the putative importance of birds as predators of diurnal Lizards, it is of considerable interest to know which traits (of lizards as well as birds) influence the outcome of a predatory attempt. We studied predation by giant terrestrial kingfishers (kookaburras, Dacelo novaeguineae: Alcedinidae) on heliothermic diurnal lizards (highland water skinks, Eulamprus tympanum: Scincidae), with particular reference to the role of prey (lizard) size. Our approach was twofold: to gather direct evidence (sizes of lizards consumed in the field, compared to those available) and indirect evidence rite-related shifts in lizard behaviour). We quantified the size structure of a natural population of skinks (determined by an extensive mark-recapture program), and compared it to the sizes of wild lizards taken by kookaburras (determined by analysis of prey remains left at the birds' nests,. Kookaburras showed size-based predation: they preyed mainly on small and medium-sized rather than large lizards in the field. However, the mechanism producing this bias remains elusive. It is not due to any distinctive behavioural attributes (locomotor ability, activity level, habitat usage) of the lizards of the size class disproportionately taken by the kookaburras. The greater vulnerability of subadult lizards may reflect subtle ontogenetic shifts in ecological and behavioural traits, but our data suggest that great caution is needed in inferring patterns of vulnerability to predation from indirect measures based on either the prey or the predator alone. Instead, we need direct observations on the interaction between the two.
Resumo:
Humpbacks have picked up a catchy tune sung by immigrants from a distant ocean. The song patterns of humpback whales (Megaptera novaeangliae) depend on where they live, with populations inhabiting different ocean basins normally singing quite distinct songs. Here we record a unique and radical song change in the song of humpback whales in the Pacific Ocean off the Australian east coast. Their song was replaced rapidly and completely by the song of the Australian west coast population from the Indian Ocean, apparently as a result of the introduction of only a small number of 'foreign' singers. Such a revolutionary change is unprecedented in animal cultural vocal traditions and suggests that novelty may stimulate change in humpback whale songs.
Resumo:
Mammalian terrestrial locomotion has many unifying principles. However, the Macropodoidea are a particularly interesting group that exhibit a number of significant deviations from the principles that seem to apply to other mammals. While the properties of materials that comprise the musculoskeletal system of mammals are similar, evidence suggests that tendon properties in macropodoid marsupials may be size or function dependent, in contrast to the situation in placental mammals. Postural differences related to hopping versus running have a dramatic effect on the scaling of the pelvic limb musculoskeletal system. Ratios of muscle fibre to tendon cross-sectional areas for ankle extensors and digital flexors scale with positive allometry in all mammals, but exponents are significantly higher in macropods. Tendon safety factors decline with increasing body mass in mammals, with eutherians at risk of ankle extensor tendon rupture at a body mass of about 150 kg, whereas kangaroos encounter similar problems at a body mass of approximately 35 kg. Tendon strength appears to limit locomotor performance in these animals. Elastic strain energy storage in tendons is mass dependent in all mammals, but exponents are significantly larger in macropodid. Tibial stresses may scale with positive allometry in kangaroos, which result in lower bone safety factors in macropods compared to eutherian mammals.
Resumo:
Female choice has rarely been documented in reptiles. In this study we examined the variation, condition-dependence and female preference for a range of male morphological and colour traits in the agamid lizard, Ctenophorus ornatus. Colour traits were measured with reflectance spectrophotometry which allows the accurate quantification of colour traits independent of the human visual system. All the colour traits varied greatly in brightness but only the throat showed high variation in the spectral shape. For the morphological traits, chest patch size showed the highest amount of variation and was also condition-dependent. Males with a larger chest patch also had a patch which was a darker black. Female mate choice trials were conducted on male chest patch size and body size, which is the trait females have preferred in other lizard species. Females showed no preference, measured as spatial association, for larger males or males with bigger chest patches. In post-hoc tests females did not prefer males with brighter throats or darker chests, Our findings suggest that females show no spatial discrimination between males on the basis of a range of traits most expected to influence female choice.
Resumo:
In this study, the pattern of movement of young male and female rabbits and the genetic structures present in adult male and female populations in four habitats was examined. The level of philopatry in young animals was found to vary between 18-90% for males and 32-95% for females in different populations. It was skewed, with more males dispersing than females in some but not all populations. Analysis of allozyme data using spatial autocorrelation showed that adult females from the same social group, unlike males, were significantly related in four of the five populations studied. Changes in genetic structure and rate of dispersal were measured before and during the recovery of a population that was artificially reduced in size. There were changes in the rate and distance of dispersal with density and sex. Subadults of both sexes moved further in the first year post crash (low density) than in the following years. While the level of dispersal for females was lower than that of the males for the first 3 years, thereafter (high density) both sexes showed similar, low levels of dispersal (20%). The density at which young animals switch behaviour between dispersal and philopatry differed for males and females. The level of genetic structuring in adult females was high in the precrash population, reduced in the first year post crash and undetectable in the second year. Dispersal behaviour of rabbits both affects the genetic structure of the population and changes with conditions. Over a wide range of levels of philopatry, genetic structuring is present in the adult female, but not the male population. Consequently, though genetic structuring is present, it does not lead to inbreeding. More long-distance movements are found in low-density populations, even though vacant warrens are available near birth warrens. The distances moved decreased as density increased. Calculation of the effective population size (N-e) shows that changes in dispersal distance offset changes in density, so that N-e remains constant.
Resumo:
Little is known of the neural mechanisms of marsupial olfaction. However, functional magnetic resonance imaging (fMRI) has made it possible to visualize dynamic brain function in mammals without invasion. In this study, central processing of urinary pheromones was investigated in the brown antechinus, Antechinus stuartii, using fMRI. Images were obtained from 18 subjects (11 males, 7 females) in response to conspecific urinary olfactory stimuli. Significant indiscriminate activation occurred in the accessory olfactory bulb, entorhinal, frontal, and parietal cortices in response to both male and female urine. The paraventricular nucleus of hypothalamus, ventrolateral thalamic nucleus, and medial preoptic area were only activated in response to male urine. Results of this MRI study indicate that projections of accessory olfactory system are activated by chemo-sensory cues. Furthermore, it appears that, based on these experiments, urinary pheromones may act on the hypothalamo-pituitary-adrenocortical axis via the paraventricular nucleus of the hypothalamus and may play an important role in the unique life history pattern of A. stuartii. Finally, this study has demonstrated that fMRI may be a powerful tool for investigations of olfactory processes in mammals.
Resumo:
Endoparasitoid wasps produce maternal protein secretions, which are transported into the body of insect hosts at oviposition to regulate host physiology for successful development of their offspring. Venturia canescens calyx fluid contains so-called virus-like particles (VLPs) that are essential for immune evasion of the developing parasitoid inside the host. VLPs consist of four major proteins. In this paper, we describe the isolation and molecular cloning of a gene (vlp2) that is a constituent of VLPs and discuss its possible role in VLP structure and function.
Resumo:
Maternal protein secretions from endoparasitoid wasps are evolutionary adaptations to regulate host physiology as part of an extended wasp phenotype. Virus-like particles (VLPs) produced in the calyx region of Venturia canescens wasps are involved in immune evasion of the developing parasitoid inside the host. In contrast to polydnaviruses (PDVs), VcVLPs are devoid of any nucleic acids. To understand the role of these particles in the regulation of host physiology and phylogenetic relationship between VLPs and PDVs, it is essential to identify particle proteins. In this paper, we describe the isolation and molecular cloning of a neprilysin-like gene (VcNEP) coding for a 94 kDa VcVLP protein and discuss its possible role in host regulation.
Resumo:
Scorpidotrema longistipes n. g., n. sp. is described from the intestine of Scorpis georgiana Valenciennes (Scorpididae) from off Point Peron, Western Australia. The new genus is distinguished by the combination of a remarkably long and retractable ventral sucker peduncle, a possible uroproct, well-developed cirrus-sac and a uterine seminal receptacle. The subfamilial relationships of the new genus are troublesome. It incorporates features of the Opecoelinae, Stenakrinae and Plagioporinae. The absence of a canalicular seminal receptacle suggests a relationship with the Opecoelinae and Stenakrinae, whereas the well-developed cirrus-sac suggests a relationship with the Plagioporinae and Stenakrinae. The overall arrangement of the gonads is not similar to that of existing genera of Stenakrinae. It is concluded that the genus is best placed in the Stenakrinae although that subfamily may now be an artificial assemblage. This new genus forms part of a distinctive fauna of trematodes restricted to Australian southern temperate fishes.
Resumo:
Tarpon have high resting or routine hematocrits (Hct) (37.6+/-3.4%) and hemoglobin concentrations (120.6+/-7.3 g 1(-1)) that increased significantly following bouts of angling-induced exercise (51.9+/-3.7% and 142.8+/-13.5 g 1(-1), respectively). Strenuous exercise was accompanied by an approximately tenfold increase in blood lactate and a muscle metabolite profile indicative of a high energy demand teleost. Routine blood values were quickly restored only when this facultative air-breathing fish was given access to atmospheric air. In vitro studies of oxygen transport capacity, a function of carrying capacity and viscosity, revealed that the optimal Hct range corresponded to that observed in fish under routine behaviour. During strenuous exercise however, further increase in viscosity was largely offset by a pronounced reduction in the shear-dependence of blood which conformed closely to an ideal Newtonian fluid. The mechanism for this behaviour of the erythrocytes appears to involve the activation of surface adrenergic receptors because pre-treatment with propranolol abolished the response. High levels of activity in tarpon living in hypoxic habitats are therefore supported by an elevated Hct with adrenergically mediated viscosity reduction, and air-breathing behaviour that enables rapid metabolic recovery. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Insects are important vectors of diseases with remarkable immune defense capabilities. Hymenopteran endoparasitoids are adapted to overcome the host defense system and, therefore, are useful sources of immune-suppressing proteins. Not much is known about venom proteins in endoparasitoids, especially those that have a functional relationship with polydnaviruses (PDVs). Here, we describe the isolation and characterization of a small venom protein (Vn4.6) from an endoparositoid, Cotesia rubecula, which interferes with the activation of the host hemolymph prophenoloxidose. The coding region for Vn4.6 is located upstream in the opposite direction of a gene coding for a C rubecula PDV-protein (Crp32). Arch. Insect Biochem. Physiol. 53:92-100, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
The colors of 51 species of Hawaiian reef fish have been measured using a spectrometer and therefore can be described in objective terms that are not influenced by the human visual experience. In common with other known reef fish populations, the colors of Hawaiian reef fish occupy spectral positions from 300-800nm; yellow or orange with blue, yellow with black, and black with white are the most frequently combined colors; and there is no link between possession of ultraviolet (UV) reflectance and UV visual sensitivity or the potential for UV visual sensitivity. In contrast to other reef systems, blue, yellow, and orange appear more frequently in Hawaiian reef fish. Based on spectral quality of reflections from fish skin, trends in fish colors can be seen that are indicative of both visually driven selective pressures and chemical or physical constraints on the design of colors. UV-reflecting colors can function as semiprivate communication signals. White or yellow with black form highly contrasting patterns that transmit well through clear water. Labroid fishes display uniquely complex colors but lack the ability to see the UV component that is common in their pigments. Step-shaped spectral curves are usually long-wavelength colors such as yellow or red, and colors with a peak-shaped spectral curves are green, blue, violet, and UV.