998 resultados para 250300 Organic Chemistry
Resumo:
Synthetic approach to 3-alkoxythapsane, comprising of the carbon framework of a small group of sesquiterpenes containing three contiguous quaternary carbon atoms has been described. A combination of alkylation, orthoester Claisen rearrangement and intramolecular diazoketone cyclopropanation has been employed for the creation of the three requisite contiguous quaternary carbon atoms.
Resumo:
Enantiospecific synthesis of bio-active butenolide (+)-iso-cladospolide B from D-(-)-tartaric acid in a short synthetic sequence is presented. Pivotal reaction sequence includes cross metathesis of an alkene and Wittig olefination. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A stereoselective synthesis of the C1-C18 region of marine natural product palmerolide A from chiral pool tartaric acid is presented. The key synthetic sequence includes the elaboration of a gamma-oxo-amide derived from tartaric acid and alkene formation involving Boord type fragmentation.
Resumo:
A detailed understanding of the mode of packing patterns that leads to the gelation of low molecular mass gelators derived from bile acid esters was carried out using solid state NMR along with complementary techniques such as powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and polarizing optical microscopy (POM). Solid state C-13{H-1} cross polarization (CP) magic angle spinning (MAS) NMR of the low molecularmass gel in its native state was recorded for the first time. A close resemblance in the packing patterns of the gel, xerogel and bulk solid states was revealed upon comparing their C-13{H-1} CPMAS NMR spectral pattern. A doublet resonance pattern of C-13 signals in C-13{H-1}CPMAS NMR spectra were observed for the gelator molecules, whereas the non-gelators showed simple singlet resonance or resulted inthe formation of inclusion complexes/solvates. PXRD patterns revealed a close isomorphous nature of the gelators indicating the similarity in the mode of the packing pattern in their solid state. Direct imaging of the evolution of nanofibers (sol-gel transition) was carried out using POM, which proved the presence of self-assembled fibrillar networks (SAFINs) in the gel. Finally powder X-ray structure determination revealed the presence of two non-equivalent molecules in an asymmetric unit which is responsible for the doublet resonance pattern in the solid state NMR spectra.
Resumo:
Sugar-based amphiphiles, consisting of two sugar head groups and an alkylene chain within the molecules, are synthesized and their aggregation and mesomorphic properties are evaluated. The hydrophilic sugar head groups, constituted with beta-D-glucopyranoside units, and the lyophilic alkylene units, are coupled to a glycerol backbone to afford the 'double-headed' sugar amphiphiles. Aggregation studies in aqueous solutions provided their critical micellar concentrations and the aggregation numbers. Mesophase characterizations by polarizing optical microscopy and differential scanning calorimetry (DSC) revealed the phase-transition behaviour of these new 'double-headed' glycolipids.
Resumo:
A total synthesis of the recently isolated polyketide natural product (+/-)-ambuic acid has been accomplished from the readily available Diels-Alder adduct of cyclopentadiene and 2-allyl-p-benzoquinone through a simple sequence with sound stereocontrol. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Amphiphilic sugars exhibit both lyotropic and thermotropic liquid-crystalline behavior. Interestingly, in spite of the abundance of chiral centers in amphiphilic sugars, their liquid-crystalline phases do not exhibit macroscopic chirality. Herein, we report on the first observation of macroscopic chirality in sugar-based bolaamphiphiles containing free hydroxyl groups. The manifestation of the chiral smectic C* phase in these bolaamphiphiles has been observed to be critically dependent on the presence of the azobenzene moiety and the suitable length of the methylene spacer. These results imply that by suitable selection of linker groups, mesogenic bolaamphiphiles possessing macroscopic chirality can be designed using a variety of naturally available sugar derivatives.
Resumo:
The conformational properties of foldamers generated from alpha gamma hybrid peptide sequences have been probed in the model sequence Boc-Aib-Gpn-Aib-Gpn-NHMe. The choice of alpha-aminoisobutyryl (Aib) and gabapentin (Gpn) residues greatly restricts sterically accessible coil formational space. This model sequence was anticipated to be a short segment of the alpha gamma C-12 helix, stabilized by three successive 4 -> 1 hydrogen bonds, corresponding to a backbone-expanded analogue of the alpha polypeptide 3(10)-helix. Unexpectedly, three distinct crystalline polymorphs were characterized in the solid state by X-ray diffraction. In one form, two successive C-12 hydrogen bonds were obtained at the N-terminus, while a novel C-17 hydrogen-bonded gamma alpha gamma turn was observed at the C-terminus. In the other two polymorphs, isolated C-9 and C-7 hydrogen-bonded turns were observed at Gpn (2) and Gpn (4). Isolated C-12 and C-9 turns were also crystallographically established in the peptides Boc-Aib-Gpn-Aib-OMe and Boc-Gpn-Aib-NHMe, respectively. Selective line broadening of NH resonances and the observation of medium range NH(i)<-> NH(i+2) NOEs established the presence of conformational heterogeneity for the tetrapeptide in CDCl3 solution. The NMR results are consistent with the limited population of the continuous C-12 helix conformation. Lengthening of the (alpha gamma)(n) sequences in the nonapeptides Boc-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Xxx (Xxx = Aib, Leu) resulted in the observation of all of the sequential NOEs characteristic of an alpha gamma C-12 helix. These results establish that conformational fragility is manifested in short hybrid alpha gamma sequences despite the choice of conformationally constrained residues, while stable helices are formed on chain extension.
Resumo:
A practical stereoselective synthesis of cytotoxic anhydrophytosphingosine pachastrissamine (jaspine B) was achieved in 48% overall yield from D-(-)-tartaric acid. Key features of the sequence include the diastereoselective formation of a tetrol with three contiguous chiral centers, which was further elaborated to pachastrissamine. The synthetic route is operationally simple, diastereoselective and is amenable for the synthesis of a number of analogues of pachastrissamine.
Resumo:
Coating of azobenzene chromophore with multivalent sugar ligands has been accomplished. Such sugar coating allows the study of the isomerization properties of this chromophore in aqueous solutions. The predominantly cis-isomer-containing photostationary state (PS) mixture of these azobenzene derivatives is found to be stable for hours. The rate constants for their isomerization, as well as the Arrhenius activation energies, are determined experimentally. An assessment of the lectin binding properties of the lactoside bearing isomeric azobenzene derivatives, by isothermal calorimetric methods, reveals the existence of an unusual cooperativity in their binding to lectin peanut agglutinin. Thermodynamic parameters evaluated for the trans and the PS mixture are discussed, in detail, for the lactoside bearing bivalent azobenzene derivative.
Resumo:
Contrary to the general assumption that photoreactions in crystals may not proceed with large molecular motions, a pedal-like motion prompted by electronic excitation is believed to be involved during the β-dimer formation from the crystals of the diamine double salt of trans-2,4-dichlorocinnamic acid and trans-1,2-diaminocyclohexane.
Resumo:
The chemical shifts of “axial” vs “equatorial” Me protons of some gem-dimethylcyclobutanoids derived from α-pinene, arising from magnetic anisotropy of the ring and as influenced by vicinal substituents, are discussed. Conformational aspects of some cis- and trans-pinonic, pinononic and pinic acids have been elucidated on the basis of NMR evidence.
Resumo:
α-and β-Himachalenes, the two major sesquiterpene components of the essential oil of Himalayan deodar (Cedrus deodara, Loud.) are shown to represent a new sequiterpenoid carbon framework. Evidence is presented which establishes their gross structures.