989 resultados para 1995_12180638 Optics-20
Resumo:
The ground state structure of C(4N+2) rings is believed to exhibit a geometric transition from angle alternation (N < or = 2) to bond alternation (N > 2). All previous density functional theory (DFT) studies on these molecules have failed to reproduce this behavior by predicting either that the transition occurs at too large a ring size, or that the transition leads to a higher symmetry cumulene. Employing the recently proposed perspective of delocalization error within DFT we rationalize this failure of common density functional approximations (DFAs) and present calculations with the rCAM-B3LYP exchange-correlation functional that show an angle-to-bond-alternation transition between C(10) and C(14). The behavior exemplified here manifests itself more generally as the well known tendency of DFAs to bias toward delocalized electron distributions as favored by Huckel aromaticity, of which the C(4N+2) rings provide a quintessential example. Additional examples are the relative energies of the C(20) bowl, cage, and ring isomers; we show that the results from functionals with minimal delocalization error are in good agreement with CCSD(T) results, in contrast to other commonly used DFAs. An unbiased DFT treatment of electron delocalization is a key for reliable prediction of relative stability and hence the structures of complex molecules where many structure stabilization mechanisms exist.
Resumo:
High-efficiency collection of photons emitted by a point source over a wide field of view (FoV) is crucial for many applications. Multiscale optics offer improved light collection by utilizing small optical components placed close to the optical source, while maintaining a wide FoV provided by conventional imaging optics. In this work, we demonstrate collection efficiency of 26% of photons emitted by a pointlike source using a micromirror fabricated in silicon with no significant decrease in collection efficiency over a 10 mm object space.
Resumo:
A thin-film InGaAs/GaAs edge-emitting single-quantum-well laser has been integrated with a tapered multimode SU-8 waveguide onto an Si substrate. The SU-8 waveguide is passively aligned to the laser using mask-based photolithography, mimicking electrical interconnection in Si complementary metal-oxide semiconductor, and overlaps one facet of the thin-film laser for coupling power from the laser to the waveguide. Injected threshold current densities of 260A/cm(2) are measured with the reduced reflectivity of the embedded laser facet while improving single mode coupling efficiency, which is theoretically simulated to be 77%.
Resumo:
We demonstrate in vivo human retinal imaging using an intraoperative microscope-mounted optical coherence tomography system (MMOCT). Our optomechanical design adapts an Oculus Binocular Indirect Ophthalmo Microscope (BIOM3), suspended from a Leica ophthalmic surgical microscope, with spectral domain optical coherence tomography (SD-OCT) scanning and relay optics. The MMOCT enables wide-field noncontact real-time cross-sectional imaging of retinal structure, allowing for SD-OCT augmented intrasurgical microscopy for intraocular visualization. We experimentally quantify the axial and lateral resolution of the MMOCT and demonstrate fundus imaging at a 20Hz frame rate.
Resumo:
As many as 20-70% of patients undergoing breast conserving surgery require repeat surgeries due to a close or positive surgical margin diagnosed post-operatively [1]. Currently there are no widely accepted tools for intra-operative margin assessment which is a significant unmet clinical need. Our group has developed a first-generation optical visible spectral imaging platform to image the molecular composition of breast tumor margins and has tested it clinically in 48 patients in a previously published study [2]. The goal of this paper is to report on the performance metrics of the system and compare it to clinical criteria for intra-operative tumor margin assessment. The system was found to have an average signal to noise ratio (SNR) >100 and <15% error in the extraction of optical properties indicating that there is sufficient SNR to leverage the differences in optical properties between negative and close/positive margins. The probe had a sensing depth of 0.5-2.2 mm over the wavelength range of 450-600 nm which is consistent with the pathologic criterion for clear margins of 0-2 mm. There was <1% cross-talk between adjacent channels of the multi-channel probe which shows that multiple sites can be measured simultaneously with negligible cross-talk between adjacent sites. Lastly, the system and measurement procedure were found to be reproducible when evaluated with repeated measures, with a low coefficient of variation (<0.11). The only aspect of the system not optimized for intra-operative use was the imaging time. The manuscript includes a discussion of how the speed of the system can be improved to work within the time constraints of an intra-operative setting.
Resumo:
We introduce a class of optical media based on adiabatically modulated, dielectric-only, and potentially extremely low-loss, photonic crystals (PC). The media we describe represent a generalization of the eikonal limit of transformation optics (TO). The basis of the concept is the possibility to fit some equal frequency surfaces of certain PCs with elliptic surfaces, allowing them to mimic the dispersion relation of light in anisotropic effective media. PC cloaks and other TO devices operating at visible wavelengths can be constructed from optically transparent substances such as glasses, whose attenuation coefficient can be as small as 10 dB/km, suggesting the TO design methodology can be applied to the development of optical devices not limited by the losses inherent to metal-based, passive metamaterials.
Resumo:
Compressive sampling enables signal reconstruction using less than one measurement per reconstructed signal value. Compressive measurement is particularly useful in generating multidimensional images from lower dimensional data. We demonstrate single frame 3D tomography from 2D holographic data.
Resumo:
Subjective age--the age people think of themselves asbeing--is measured in a representative Danish sample of 1,470 adults between 20 and 97 years of age through personal, in-home interviews. On the average, adults younger than 25 have older subjective ages, and those older than 25 have younger subjective ages, favoring a lifespan-developmental view over an age-denial view of subjective age. When the discrepancy between subjective and chronological age is calculated as a proportion of chronological age, no increase is seen after age 40; older respondents feel 20% younger than their actual age. Demographic variables (gender, income, and education) account for very little variance in subjective age.
Resumo:
For word-cued autobiographical memories, older adults had an increase, or bump, from the ages 10 to 30. All age groups had fewer memories from childhood than from other years and a power-function retention for memories from the most recent 10 years. There were no consistent differences in reaction times and rating scale responses across decades. Concrete words cued older memories, but no property of the cues predicted which memories would come from the bump. The 5 most important memories given by 20- and 35-year-old participants were distributed similarly to their word-cued memories, but those given by 70-year-old participants came mostly from the single 20-to-30 decade. No theory fully accounts for the bump.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
Por quinta vez puso cuatro motas de tinta en el papel, les puso nombres (A, B, C, D) y los unió con segmentos para formar un cuadrilátero. Luego señaló los puntos medios de sus cuatro lados y los conectó formando otro cuadrilátero (P, Q, R, S). Ahí estaba el problema. Ese cuadrilátero interior siempre resultaba ser un paralelogramo pusiera como pusiera los cuatro puntos originales. ¿Acaso había orden en el caos? Por un momento pensó que quizá había truco, que tal vez sucedía así porque la gente ponía los puntos de formas similares. Pero ya había probado configuraciones muy raras, incluso dejó que los segmentos del cuadrilátero ABCD se interceptasen, y siempre obtenía idéntico resultado. No, lo que parece cumplirse para cualquier caso no es ningún truco, sino un teorema que demostrar.