949 resultados para 091205 Functional Materials
Resumo:
Data generated in a normal gravity environment is often used in design and risk assessment for reduced gravity applications. It has been clearly demonstrated that this is a conservative approach for non-metallic materials which have been repeatedly shown to be less flammable in a reduced gravity environment. However, recent work has demonstrated this is not true for metallic materials. This work, conducted in a newly completed drop tower observed a significant increase in both lowest burn pressure and burn rate in reduced gravity. Hence the normal gravity qualification of a metallic materials’ lowest burn pressure or burn rate for reduced-gravity or space-based systems is clearly not conservative. This paper presents a summary of this work and the results obtained for several metallic materials showing an increased flammability and burn rate for a range of oxygen pressures, and discusses the implications of this work on the fire-safety of space-based systems.
Resumo:
Reforms to the national research and research training system by the Commonwealth Government of Australia sought to effectively connect research conducted in universities to Australia's national innovation system. Research training has a key role in ensuring an adequate supply of highly skilled people for the national innovation system. During their studies, research students produce and disseminate a massive amount of new knowledge. Prior to this study, there was no research that examined the contribution of research training to Australia's national innovation system despite the existence of policy initiatives aiming to enhance this contribution. Given Australia's below average (but improving) innovation performance compared to other OECD countries, the inclusion of Finland and the United States provided further insights into the key research question. This study examined three obvious ways that research training contributes to the national innovation systems in the three countries: the international mobility and migration of research students and graduates, knowledge production and distribution by research students, and the impact of research training as advanced human capital formation on economic growth. Findings have informed the concept of a research training culture of innovation that aims to enhance the contribution of research training to Australia's national innovation system. Key features include internationally competitive research and research training environments; research training programs that equip students with economically-relevant knowledge and the capabilities required by employers operating in knowledge-based economies; attractive research careers in different sectors; a national commitment to R&D as indicated by high levels of gross and business R&D expenditure; high private and social rates of return from research training; and the horizontal coordination of key organisations that create policy for, and/or invest in research training.
Resumo:
In this study, cell sheets comprising multilayered porcine bone marrow stromal cells (BMSC) were assembled with fully interconnected scaffolds made from medical-grade polycaprolactone–calcium phosphate (mPCL–CaP), for the engineering of structural and functional bone grafts. The BMSC sheets were harvested from culture flasks and wrapped around pre-seeded composite scaffolds. The layered cell sheets integrated well with the scaffold/cell construct and remained viable, with mineralized nodules visible both inside and outside the scaffold for up to 8 weeks culture. Cells within the constructs underwent classical in vitro osteogenic differentiation with the associated elevation of alkaline phosphatase activity and bone-related protein expression. In vivo, two sets of cell-sheet-scaffold/cell constructs were transplanted under the skin of nude rats. The first set of constructs (554mm3) were assembled with BMSC sheets and cultured for 8 weeks before implantation. The second set of constructs (10104mm3) was implanted immediately after assembly with BMSC sheets, with no further in vitro culture. For both groups, neo cortical and well-vascularised cancellous bone were formed within the constructs with up to 40% bone volume. Histological and immunohistochemical examination revealed that neo bone tissue formed from the pool of seeded BMSC and the bone formation followed predominantly an endochondral pathway, with woven bone matrix subsequently maturing into fully mineralized compact bone; exhibiting the histological markers of native bone. These findings demonstrate that large bone tissues similar to native bone can be regenerated utilizing BMSC sheet techniques in conjunction with composite scaffolds whose structures are optimized from a mechanical, nutrient transport and vascularization perspective.
Resumo:
This guide explains how copyright law applies to Australian government material, how copyright can be managed to facilitate beneficial open access practices by government, how CC licences can be used to achieve open access to government material, and provides practical step-by-step guidance for agencies and their officers on licensing and use of government copyright materials under CC 2.5 Australia licences.
Resumo:
Background: The Functional Capacity Index (FCI) was designed to predict physical function 12 months after injury. We report a validation study of the FCI. Methods: This was a consecutive case series registered in the Queensland Trauma Registry who consented to the prospective 12-month telephone-administered follow-up study. FCI scores measured at 12 months were compared with those originally predicted. Results: Complete Abbreviated Injury Scale score information was available for 617 individuals, of whom 587 (95%) could be assigned at least one FCI score (range, 1-17). Agreement between the largest predicted FCI and observed FCI score was poor ([kappa] = 0.05; 95% confidence interval, 0.00-0.10) and explained only 1% of the variability in observed FCI. Using an encompassing model that included all FCI assignments, agreement remained poor ([kappa] = 0.05; 95% confidence interval, -0.02-0.12), and the model explained only 9% of the variability in observed FCI. Conclusion: The predicted functional capacity poorly agrees with actual functional outcomes. Further research should consider including other (noninjury) explanatory factors in predicting FCI at 12 months.
Resumo:
Piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films are achieved via charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to suffer due to strong vacuum UV, gamma, X-ray, energetic particles and atomic oxygen under low earth orbit exposure conditions. The degradation of PVDF and its copolymers under various stress environments has been investigated. Initial radiation aging studies using gamma- and e-beam irradiation have shown complex material changes with significant crosslinking, lowered melting and Curie points (where observable), effects on crystallinity, but little influence on overall piezoelectric properties. Surprisingly, complex aging processes have also been observed in elevated temperature environments with annealing phenomena and cyclic stresses resulting in thermal depoling of domains. Overall materials performance appears to be governed by a combination of chemical and physical degradation processes. Molecular changes are primarily induced via radiative damage, and physical damage from temperature and AO exposure is evident as depoling and surface erosion. Major differences between individual copolymers have been observed providing feedback on material selection strategies.
Resumo:
The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium.
Resumo:
Purpose: The purpose of this paper is to explore the role of cross-functional teams in the alignment between system effectiveness and operational effectiveness after the implementation of enterprise information systems (EIS). In addition, it aims to explore the contribution of cross-functional teams to improvement in operational performance. ---------- Design/methodology/approach: The research uses a combination of qualitative and quantitative methods, in a two-stage methodological approach, to investigate the influence of cross-functional teams on the alignment between system effectiveness and operational effectiveness and the impact of the stated alignment on the improvement in operational performance. ---------- Findings: Initial findings suggest that factors stemming from system effectiveness and the performance objectives stemming from operational effectiveness are important and significantly well correlated factors that promote the alignment between the effectiveness of technological implementation and the effectiveness of operations. In addition, confirmatory factor analysis has been used to find the structural relationships and provide explanations for the stated alignment and the contribution of cross-functional teams to the improvement in operational performance. ---------- Research limitations/implications: The principal limitation of this study is its small sample size. ---------- Practical implications: Cross-functional teams have been used by many organisations as a way of involving expertise from different functional areas in the implementation of innovative technologies. An appropriate use of the dimensions that emerged from this research, in the context of cross-functional teams, will assist organisations to properly utilise cross-functional teams with the aim of improving operational performance. ---------- Originality/value: The paper presents a new approach to measure the effectiveness of EIS implementation by adding new dimensions to measure it.
Resumo:
The macerals in bituminous coals with varying organic sulfur content from the Early Permian Greta Coal Measures at three locations (Southland Colliery, Drayton Colliery and the Cranky Corner Basin), in and around the Sydney Basin (Australia), have been studied using light-element electron microprobe (EMP) analysis and micro-ATR–FTIR. Electron microprobe analysis of individual macerals reveals that the vitrinite in both the Cranky Corner Basin and Drayton Colliery (Puxtrees seam) samples have similar carbon contents (ca. 78% C in telocollinite), suggesting that they are of equivalent rank. However, the Cranky Corner coals have anomalously low vitrinite reflectance (down to 0.45%) vs. the Drayton materials (ca. 0.7%). They also have very high organic S content (3–6.5%) and lower O content (ca. 10%) than the equivalent macerals in the Drayton sample (0.7% S and 15.6% O). A study was carried out to investigate the impacts of the high organic S on the functional groups of the macerals in these two otherwise iso-rank, stratigraphically-equivalent seams. An iso-rank low-S coal from the overlying Wittingham Coal Measures near Muswellbrook and coals of slightly higher rank from the Greta Coal Measures at Southland Colliery near Cessnock were also evaluated using the same techniques to extend the data set. Although the telocollinite in the Drayton and Cranky Corner coals have very similar carbon content (ca.78% C), the ATR–FTIR spectra of the vitrinite and inertinite macerals in these respectively low S and high S coals show some distinct differences in IR absorbance from various aliphatic and aromatic functional groups. The differences in absorbance of the aliphatic stretching bands (2800–3000 cm−1) and the aromatic carbon (CC) peak at 1606 cm−1 are very obvious. Compared to that of the Drayton sample (0.7% S and 15% O), the telocollinite of the Cranky Corner coal (6% S and 10% O) clearly shows: (i) less absorbance from OH groups, represented by a broad region around 3553 cm−1, (ii) much stronger aliphatic C–H absorbance (stretching modes around 3000–2800 cm−1 and bending modes around 1442 cm−1) and (iii) less absorbance from aromatic carbon functional groups (peaking at 1606 cm−1). Evaluation of the iso-rank Drayton and Cranky Corner coals shows that: (i) the aliphatic C–H absorbances decrease with increasing oxygen content but increase with increasing organic S content and (ii) the aromatic H to aliphatic H ratio (Har/Hali) for the telocollinite increases with (organic) O%, but decreases progressively with increasing organic S. The high organic S content in the maceral appears to be accompanied by a greater proportion of aliphatic functional groups, possibly as a result of some of the O within maceral ring structures in the high S coal samples being replaced.
Resumo:
Objective: During hospitalisation older people often experience functional decline which impacts on their future independence. The objective of this study was to evaluate a multifaceted transitional care intervention including home-based exercise strategies for at-risk older people on functional status, independence in activities of daily living, and walking ability. Methods: A randomised controlled trial was undertaken in a metropolitan hospital in Australia with 128 patients (64 intervention, 64 control) aged over 65 years with an acute medical admission and at least one risk factor for hospital readmission. The intervention group received an individually tailored program for exercise and follow-up care which was commenced in hospital and included regular visits in hospital by a physiotherapist and a Registered Nurse, a home visit following discharge, and regular telephone follow-up for 24 weeks following discharge. The program was designed to improve health promoting behaviours, strength, stability, endurance and mobility. Data were collected at baseline, then 4, 12 and 24 weeks following discharge using the Index of Activities of Daily Living (ADL), Instrumental Index of Activities of Daily Living (IADL), and the Walking Impairment Questionnaire (Modified). Results: Significant improvements were found in the intervention group in IADL scores (p<.001), ADL scores (p<.001), and WIQ scale scores (p<.001) in comparison to the control group. The greatest improvements were found in the first four weeks following discharge. Conclusions: Early introduction of a transitional model of care incorporating a tailored exercise program and regular telephone follow-up for hospitalised at-risk older adults can improve independence and functional ability.
Resumo:
Although many different materials, techniques and methods, including artificial or engineered bone substitutes, have been used to repair various bone defects, the restoration of critical-sized bone defects caused by trauma, surgery or congenital malformation is still a great challenge to orthopedic surgeons. One important fact that has been neglected in the pursuit of resolutions for large bone defect healing is that most physiological bone defect healing needs the periosteum and stripping off the periosteum may result in non-union or non-healed bone defects. Periosteum plays very important roles not only in bone development but also in bone defect healing. The purpose of this project was to construct a functional periosteum in vitro using a single stem cell source and then test its ability to aid the repair of critical-sized bone defect in animal models. This project was designed with three separate but closely-linked parts which in the end led to four independent papers. The first part of this study investigated the structural and cellular features in periostea from diaphyseal and metaphyseal bone surfaces in rats of different ages or with osteoporosis. Histological and immunohistological methods were used in this part of the study. Results revealed that the structure and cell populations in periosteum are both age-related and site-specific. The diaphyseal periosteum showed age-related degeneration, whereas the metaphyseal periosteum is more destructive in older aged rats. The periosteum from osteoporotic bones differs from normal bones both in terms of structure and cell populations. This is especially evident in the cambial layer of the metaphyseal area. Bone resorption appears to be more active in the periosteum from osteoporotic bones, whereas bone formation activity is comparable between the osteoporotic and normal bone. The dysregulation of bone resorption and formation in the periosteum may also be the effect of the interaction between various neural pathways and the cell populations residing within it. One of the most important aspects in periosteum engineering is how to introduce new blood vessels into the engineered periosteum to help form vascularized bone tissues in bone defect areas. The second part of this study was designed to investigate the possibility of differentiating bone marrow stromal cells (BMSCs) into the endothelial cells and using them to construct vascularized periosteum. The endothelial cell differentiation of BMSCs was induced in pro-angiogenic media under both normoxia and CoCl2 (hypoxia-mimicking agent)-induced hypoxia conditions. The VEGF/PEDF expression pattern, endothelial cell specific marker expression, in vitro and in vivo vascularization ability of BMSCs cultured in different situations were assessed. Results revealed that BMSCs most likely cannot be differentiated into endothelial cells through the application of pro-angiogenic growth factors or by culturing under CoCl2-induced hypoxic conditions. However, they may be involved in angiogenesis as regulators under both normoxia and hypoxia conditions. Two major angiogenesis-related growth factors, VEGF (pro-angiogenic) and PEDF (anti-angiogenic) were found to have altered their expressions in accordance with the extracellular environment. BMSCs treated with the hypoxia-mimicking agent CoCl2 expressed more VEGF and less PEDF and enhanced the vascularization of subcutaneous implants in vivo. Based on the findings of the second part, the CoCl2 pre-treated BMSCs were used to construct periosteum, and the in vivo vascularization and osteogenesis of the constructed periosteum were assessed in the third part of this project. The findings of the third part revealed that BMSCs pre-treated with CoCl2 could enhance both ectopic and orthotopic osteogenesis of BMSCs-derived osteoblasts and vascularization at the early osteogenic stage, and the endothelial cells (HUVECs), which were used as positive control, were only capable of promoting osteogenesis after four-weeks. The subcutaneous area of the mouse is most likely inappropriate for assessing new bone formation on collagen scaffolds. This study demonstrated the potential application of CoCl2 pre-treated BMSCs in the tissue engineering not only for periosteum but also bone or other vascularized tissues. In summary, the structure and cell populations in periosteum are age-related, site-specific and closely linked with bone health status. BMSCs as a stem cell source for periosteum engineering are not endothelial cell progenitors but regulators, and CoCl2-treated BMSCs expressed more VEGF and less PEDF. These CoCl2-treated BMSCs enhanced both vascularization and osteogenesis in constructed periosteum transplanted in vivo.